Do you want to publish a course? Click here

Convergence analysis of some tent-based schemes for linear hyperbolic systems

127   0   0.0 ( 0 )
 Added by Dow Drake
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Finite element methods for symmetric linear hyperbolic systems using unstructured advancing fronts (satisfying a causality condition) are considered in this work. Convergence results and error bounds are obtained for mapped tent pitching schemes made with standard discontinuous Galerkin discretizations for spatial approximation on mapped tents. Techniques to study semidiscretization on mapped tents, design fully discrete schemes, prove local error bounds, prove stability on spacetime fronts, and bound error propagated through unstructured layers are developed.



rate research

Read More

A spacetime domain can be progressively meshed by tent shaped objects. Numerical methods for solving hyperbolic systems using such tent meshes to advance in time have been proposed previously. Such schemes have the ability to advance in time by different amounts at different spatial locations. This paper explores a technique by which standard discretizations, including explicit time stepping, can be used within tent-shaped spacetime domains. The technique transforms the equations within a spacetime tent to a domain where space and time are separable. After detailing techniques based on this mapping, several examples including the acoustic wave equation and the Euler system are considered.
Let $A$ be a real $ntimes n$ matrix and $z,bin mathbb R^n$. The piecewise linear equation system $z-Avert zvert = b$ is called an textit{absolute value equation}. We consider two solvers for this problem, one direct, one semi-iterative, and extend their previously known ranges of convergence.
In this work we construct reliable a posteriori estimates for some discontinuous Galerkin schemes applied to nonlinear systems of hyperbolic conservation laws. We make use of appropriate reconstructions of the discrete solution together with the relative entropy stability framework. The methodology we use is quite general and allows for a posteriori control of discontinuous Galerkin schemes with standard flux choices which appear in the approximation of conservation laws. In addition to the analysis, we conduct some numerical benchmarking to test the robustness of the resultant estimator.
We consider linear systems $Ax = b$ where $A in mathbb{R}^{m times n}$ consists of normalized rows, $|a_i|_{ell^2} = 1$, and where up to $beta m$ entries of $b$ have been corrupted (possibly by arbitrarily large numbers). Haddock, Needell, Rebrova and Swartworth propose a quantile-based Random Kaczmarz method and show that for certain random matrices $A$ it converges with high likelihood to the true solution. We prove a deterministic version by constructing, for any matrix $A$, a number $beta_A$ such that there is convergence for all perturbations with $beta < beta_A$. Assuming a random matrix heuristic, this proves convergence for tall Gaussian matrices with up to $sim 0.5%$ corruption (a number that can likely be improved).
Often in applications ranging from medical imaging and sensor networks to error correction and data science (and beyond), one needs to solve large-scale linear systems in which a fraction of the measurements have been corrupted. We consider solving such large-scale systems of linear equations $mathbf{A}mathbf{x}=mathbf{b}$ that are inconsistent due to corruptions in the measurement vector $mathbf{b}$. We develop several variants of iterative methods that converge to the solution of the uncorrupted system of equations, even in the presence of large corruptions. These methods make use of a quantile of the absolute values of the residual vector in determining the iterate update. We present both theoretical and empirical results that demonstrate the promise of these iterative approaches.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا