No Arabic abstract
In this paper, we give several new results on solvability of a quadratic BSDE whose generator depends also on the mean of both variables. First, we consider such a BSDE using John-Nirenbergs inequality for BMO martingales to estimate its contribution to the evolution of the first unknown variable. Then we consider the BSDE having an additive expected value of a quadratic generator in addition to the usual quadratic one. In this case, we use a deterministic shift transformation to the first unknown variable, when the usual quadratic generator depends neither on the first variable nor its mean, the general case can be treated by a fixed point argument.
In this paper, we consider a reflected backward stochastic differential equation driven by a $G$-Brownian motion ($G$-BSDE), with the generator growing quadratically in the second unknown. We obtain the existence by the penalty method, and a priori estimates which implies the uniqueness, for solutions of the $G$-BSDE. Moreover, focusing our discussion at the Markovian setting, we give a nonlinear Feynman-Kac formula for solutions of a fully nonlinear partial differential equation.
In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochastic analysis techniques, we propose an approximation procedure to prove existence and uniqueness result when the generator is convex (or concave) and terminal value is of exponential moments of arbitrary order. Finally, we also establish the well-posedness of multi-dimensional G-BSDEs with diagonally quadratic generators.
Motivated by an equilibrium problem, we establish the existence of a solution for a family of Markovian backward stochastic differential equations with quadratic nonlinearity and discontinuity in $Z$. Using unique continuation and backward uniqueness, we show that the set of discontinuity has measure zero. In a continuous-time stochastic model of an endowment economy, we prove the existence of an incomplete Radner equilibrium with nondegenerate endogenous volatility.
We study quantitative stability of the solutions to Markovian quadratic reflected BSDEs with bounded terminal data. By virtue of the BMO martingale and change of measure techniques, we obtain the estimate of the variation of the solutions in terms of the difference of the driven forward processes. In addition, we propose a truncated discrete-time numerical scheme for quadratic reflected BSDEs, and obtain the explicit rate of convergence by applying the quantitative stability result.
We prove the existence of maximal (and minimal) solution for one-dimensional generalized doubly reflected backward stochastic differential equation (RBSDE for short) with irregular barriers and stochastic quadratic growth, for which the solution $Y$ has to remain between two rcll barriers $L$ and $U$ on $[0; T[$, and its left limit $Y_-$ has to stay respectively above and below two predictable barriers $l$ and $u$ on $]0; T]$. This is done without assuming any $P$-integrability conditions and under weaker assumptions on the input data. In particular, we construct a maximal solution for such a RBSDE when the terminal condition $xi$ is only ${cal F}_T-$measurable and the driver $f$ is continuous with general growth with respect to the variable $y$ and stochastic quadratic growth with respect to the variable $z$. Our result is based on a (generalized) penalization method. This method allow us find an equivalent form to our original RBSDE where its solution has to remain between two new rcll reflecting barriers $overline{Y}$ and $underline{Y}$ which are, roughly speaking, the limit of the penalizing equations driven by the dominating conditions assumed on the coefficients. A standard and equivalent form to our initial RBSDE as well as a characterization of the solution $Y$ as a generalized Snell envelope of some given predictable process $l$ are also given.