Do you want to publish a course? Click here

Quantitative stability and numerical analysis of Markovian quadratic BSDEs with reflection

85   0   0.0 ( 0 )
 Added by Gechun Liang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study quantitative stability of the solutions to Markovian quadratic reflected BSDEs with bounded terminal data. By virtue of the BMO martingale and change of measure techniques, we obtain the estimate of the variation of the solutions in terms of the difference of the driven forward processes. In addition, we propose a truncated discrete-time numerical scheme for quadratic reflected BSDEs, and obtain the explicit rate of convergence by applying the quantitative stability result.



rate research

Read More

195 - Shanjian Tang , Wei Zhong , 2013
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The value process is characterized by a system of multi-dimensional RBSDEs with oblique reflection, whose existence and uniqueness are by no means trivial and are therefore carefully examined. Existence is shown using both methods of the Picard iteration and penalization, but under some different conditions. Uniqueness is proved by representation either as the value process to our optimal switching problem for one-dimensional RBSDEs, or as the equilibrium value process to a stochastic differential game of switching and stopping. Finally, the switched RBSDE is interpreted as a real option.
Motivated by an equilibrium problem, we establish the existence of a solution for a family of Markovian backward stochastic differential equations with quadratic nonlinearity and discontinuity in $Z$. Using unique continuation and backward uniqueness, we show that the set of discontinuity has measure zero. In a continuous-time stochastic model of an endowment economy, we prove the existence of an incomplete Radner equilibrium with nondegenerate endogenous volatility.
113 - Hel`ene Hibon 2017
In this paper, we give several new results on solvability of a quadratic BSDE whose generator depends also on the mean of both variables. First, we consider such a BSDE using John-Nirenbergs inequality for BMO martingales to estimate its contribution to the evolution of the first unknown variable. Then we consider the BSDE having an additive expected value of a quadratic generator in addition to the usual quadratic one. In this case, we use a deterministic shift transformation to the first unknown variable, when the usual quadratic generator depends neither on the first variable nor its mean, the general case can be treated by a fixed point argument.
In this paper, we first study one-dimensional quadratic backward stochastic differential equations driven by $G$-Brownian motions ($G$-BSDEs) with unbounded terminal values. With the help of a $theta$-method of Briand and Hu [4] and nonlinear stochastic analysis techniques, we propose an approximation procedure to prove existence and uniqueness result when the generator is convex (or concave) and terminal value is of exponential moments of arbitrary order. Finally, we also establish the well-posedness of multi-dimensional G-BSDEs with diagonally quadratic generators.
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate of convergence in a suitable $L^1$-norm and we implement the scheme numerically. To the best of our knowledge this is the first paper to study (and implement) numerical solutions of SDEs whose drift lives in a space of distributions. As a byproduct we also obtain an estimate of the convergence rate for a numerical scheme applied to SDEs with drift in $L^p$-spaces with $pin(1,infty)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا