Do you want to publish a course? Click here

Using hadron-in-jet data in a global analysis of $D^{*}$ fragmentation functions

143   0   0.0 ( 0 )
 Added by Felix Ringer
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We present a novel global QCD analysis of charged $D^{*}$-meson fragmentation functions at next-to-leading order accuracy. This is achieved by making use of the available data for single-inclusive $D^{*}$-meson production in electron-positron annihilation, hadron-hadron collisions, and, for the first time, in-jet fragmentation in proton-proton scattering. It is shown how to include all relevant processes efficiently and without approximations within the Mellin moment technique, specifically for the in-jet fragmentation cross section. The presented technical framework is generic and can be straightforwardly applied to future analyses of fragmentation functions for other hadron species, as soon as more in-jet fragmentation data become available. We choose to work within the Zero Mass Variable Flavor Number Scheme which is applicable for sufficiently high energies and transverse momenta. The obtained optimum set of parton-to-$D^{*}$ fragmentation functions is accompanied by Hessian uncertainty sets which allow one to propagate hadronization uncertainties to other processes of interest.

rate research

Read More

We develop the theoretical framework needed to study the distribution of hadrons with general polarization inside jets, with and without transverse momentum measured with respect to the standard jet axis. The key development in this paper, referred to as polarized jet fragmentation functions, opens up new opportunities to study both collinear and transverse momentum dependent (TMD) fragmentation functions. As two examples of the developed framework, we study longitudinally polarized collinear $Lambda$ and transversely polarized TMD $Lambda$ production inside jets in both $pp$ and $ep$ collisions. We find that both observables have high potential in constraining spin-dependent fragmentation functions with sizeable asymmetries predicted, in particular, at the future Electron-Ion Collider.
Recently the LHCb collaboration has measured both longitudinal and transverse momentum distribution of hadrons produced inside $Z$-tagged jets in proton-proton collisions at the Large Hadron Collider. These distributions are commonly referred to as jet fragmentation functions and are characterized by the longitudinal momentum fraction $z_h$ of the jet carried by the hadron and the transverse momentum $j_perp$ with respect to the jet direction. We derive a QCD formalism within Soft-Collinear Effective Theory to describe these distributions and find that the $z_h$-dependence provides information on standard collinear fragmentation functions, while $j_perp$-dependence probes transverse momentum dependent (TMD) fragmentation functions. We perform theoretical calculations and compare our results with the LHCb data. We find good agreement for the intermediate $z_h$ region. For $j_perp$-dependence, we suggest binning in both $z_h$ and $j_perp$, which would lead to a more direct probing of TMD fragmentation functions.
We perform global fit to the quark Sivers function within the transverse momentum dependent (TMD) factorization formalism in QCD. We simultaneously fit Sivers asymmetry data from Semi-Inclusive Deep Inelastic Scattering (SIDIS) at COMPASS, HERMES, and JLab, from Drell-Yan lepton pair production at COMPASS, and from $W/Z$ boson at RHIC. This extraction is performed at next-to-leading order (NLO) and next-to-next-to leading logarithmic (NNLL) accuracy. We find excellent agreement between our extracted asymmetry and the experimental data for SIDIS and Drell-Yan lepton pair production, while tension arises when trying to describe the spin asymmetries of $W/Z$ bosons at RHIC. We carefully assess the situation, and we study in details the impact of the RHIC data and their implications through different ways of performing the fit. In addition, we find that the quality of the description of $W/Z$ vector boson asymmetry data could be strongly sensitive to the DGLAP evolution of Qiu-Sterman function, besides the usual TMD evolution. We present discussion on this and the implications for measurements of the transverse-spin asymmetries at the future Electron Ion Collider.
The nature of a jets fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area based techniques proposed in the past for jet p_ts. Furthermore, complications due to correlations between background-fluctuation contributions to the jets p_t and to its particle content are easily corrected for.
The fragmentation of a colored parton directly into a pair of colorless hadrons is a non-perturbative mechanism that offers important insights into the nucleon structure. Di-hadron fragmentation functions can be extracted from semi-inclusive electron-positron annihilation data. They also appear in observables describing the semi-inclusive production of two hadrons in deep-inelastic scattering of leptons off nucleons or in hadron-hadron collisions. When a target nucleon is transversely polarized, a specific chiral-odd di-hadron fragmentation function can be used as the analyzer of the net density of transversely polarized quarks in a transversely polarized nucleon, the so-called transversity distribution. The latter can be extracted through suitable single-spin asymmetries in the framework of collinear factorization, thus in a much simpler framework with respect to the traditional one in single-hadron fragmentation. At subleading twist, the same chiral-odd di-hadron fragmentation function provides the cleanest access to the poorly known twist-3 parton distribution $e(x)$, which is intimately related to the mechanism of dynamical chiral symmetry breaking in QCD. When sensitive to details of transverse momentum dynamics of partons, the di-hadron fragmentation functions for a longitudinally polarized quark can be connected to the longitudinal jet handedness to explore possible effects due to $CP-$violation of the QCD vacuum. In this review, we outline the formalism of di-hadron fragmentation functions, we discuss different observables where they appear and we present measurements and future worldwide plans.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا