No Arabic abstract
The fragmentation of a colored parton directly into a pair of colorless hadrons is a non-perturbative mechanism that offers important insights into the nucleon structure. Di-hadron fragmentation functions can be extracted from semi-inclusive electron-positron annihilation data. They also appear in observables describing the semi-inclusive production of two hadrons in deep-inelastic scattering of leptons off nucleons or in hadron-hadron collisions. When a target nucleon is transversely polarized, a specific chiral-odd di-hadron fragmentation function can be used as the analyzer of the net density of transversely polarized quarks in a transversely polarized nucleon, the so-called transversity distribution. The latter can be extracted through suitable single-spin asymmetries in the framework of collinear factorization, thus in a much simpler framework with respect to the traditional one in single-hadron fragmentation. At subleading twist, the same chiral-odd di-hadron fragmentation function provides the cleanest access to the poorly known twist-3 parton distribution $e(x)$, which is intimately related to the mechanism of dynamical chiral symmetry breaking in QCD. When sensitive to details of transverse momentum dynamics of partons, the di-hadron fragmentation functions for a longitudinally polarized quark can be connected to the longitudinal jet handedness to explore possible effects due to $CP-$violation of the QCD vacuum. In this review, we outline the formalism of di-hadron fragmentation functions, we discuss different observables where they appear and we present measurements and future worldwide plans.
We summarize the latest achievements about the extraction of the transversity parton distribution and proton tensor charge based on an analysis of pion-pair production in deep-inelastic scattering off transversely polarized targets. Recently released data for proton and deuteron targets by HERMES and COMPASS allow for a flavor separation of the valence components of transversity. At variance with the Collins effect, this extraction is performed in the framework of collinear factorization and relies on di-hadron fragmentation functions. The latter have been taken from the first recent analysis of the semi-inclusive production of two pion pairs in back-to-back jets in e+e- annihilation. We also comment on the possibility of isolating new azimuthally asymmetric correlations of opposite pion pairs, which could arise when a fragmenting quark crosses parity-odd domains localized in Minkowski space-time and induced by the topologically nontrivial QCD background (the so-called theta vacuum).
Determinations of the protons collinear parton distribution functions (PDFs) are emerging with growing precision due to increased experimental activity at facilities like the Large Hadron Collider. While this copious information is valuable, the speed at which it is released makes it difficult to quickly assess its impact on the PDFs, short of performing computationally expensive global fits. As an alternative, we explore new methods for quantifying the potential impact of experimental data on the extraction of proton PDFs. Our approach relies crucially on the Hessian correlation between theory-data residuals and the PDFs themselves, as well as on a newly defined quantity --- the sensitivity --- which represents an extension of the correlation and reflects both PDF-driven and experimental uncertainties. This approach is realized in a new, publicly available analysis package PDFSense, which operates with these statistical measures to identify particularly sensitive experiments, weigh their relative or potential impact on PDFs, and visualize their detailed distributions in a space of the parton momentum fraction $x$ and factorization scale $mu$. This tool offers a new means of understanding the influence of individual measurements in existing fits, as well as a predictive device for directing future fits toward the highest impact data and assumptions. Along the way, many new physics insights can be gained or reinforced. As one of many examples, PDFSense is employed to rank the projected impact of new LHC measurements in jet, vector boson, and $tbar{t}$ production and leads us to the conclusion that inclusive jet production at the LHC has a potential for playing an indispensable role in future PDF fits. These conclusions are independently verified by preliminarily fitting this experimental information and investigating the constraints they supply using the Lagrange multiplier technique.
In a framework of a multi-phase transport model with both partonic and hadronic interactions, azimuthal correlations between trigger particles and associated scattering particles in Au + Au collisions at $sqrt{s_{NN}}$ = 200 GeV/$c$ have been studied by the mixing-event technique. The Mach-like structure has been observed in correlation function for central collisions. It is shown that the Mach-like structure is basically born in the partonic process and further developed in hadronic rescattering process. However, hadronic rescattering alone cannot reproduce the amplitude of Mach-like cone on away side, therefore partonic cascade process is necessary to describe the amplitude of Mach-like cone on away side in experiment. In addition, three-particle correlations have been investigated in central Au + Au collisions with the AMPT model, and the results support the conclusion that partonic cascade processes enhance the opening angle of Mach-like cone structures.
We review the current status of experimental and theoretical understanding of the axial nucleon structure at low and moderate energies. Topics considered include (quasi)elastic (anti)neutrino-nucleon scattering, charged pion electroproduction off nucleons and ordinary as well as radiative muon capture on the proton.
The transversity was recently extracted from data on the production of hadron pairs in semi-inclusive deep-inelastic scattering. This analysis can be conveniently performed in the framework of collinear factorization where the elementary mechanism is represented by the simple product of transversity and of a suitable chiral-odd function describing the fragmentation of a transversely polarized parton into a pair of hadrons inside the same current jet. The same elementary mechanism was predicted long ago to generate an asymmetry in the azimuthal distribution of the hadron pairs when they are produced in proton-proton collisions with one transversely polarized proton. Recently, the STAR Collaboration has observed this asymmetry. We analyze the impact of these data on our knowledge of transversity and we present its first preliminary extraction from a global fit of all data in hard processes with inclusive di-hadron production.