Do you want to publish a course? Click here

Further Evidence for a Weak Neutron Star Magnetosphere in the Accreting Millisecond X-Ray Pulsar HETE J1900.1-2455

57   0   0.0 ( 0 )
 Added by Alessandro Patruno
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

HETE J1900.1--2455 is a peculiar accreting millisecond X-ray pulsar (AMXP) because it has shown intermittent pulsations after 22 days from the beginning of its outburst. The origin of intermittent pulses in accreting systems remains to be understood. To better investigate the phenomenon of intermittent pulsations here we present an analysis of 7 years of X-ray data collected with the Rossi X-Ray Timing Explorer and focus on the aperiodic variability. We show that the power spectral components follow the same frequency correlations as the non-pulsating atoll sources. We also study the known kHz QPO and we show that it reaches a frequency of up to approximately 900 Hz, which is the highest frequency observed for any kHz QPO in an AMXP. We also report the discovery of a new kHz QPO at ~500 Hz. Finally, we discuss in further detail the known pulse phase drift observed in this source, which so far has no explanation. We interpret the behavior of the aperiodic variability, the high frequency of the 900 kHz QPO and the presence of the pulse drift as three independent pieces of evidence for a very weak neutron star magnetosphere in HETE J1900.1--2455.



rate research

Read More

We present phase resolved optical photometry and spectroscopy of the accreting millisecond pulsar HETE J1900.1-2455. Our R-band light curves exhibit a sinusoidal modulation, at close to the orbital period, which we initially attributed to X-ray heating of the irradiated face of the secondary star. However, further analysis reveals that the source of the modulation is more likely due to superhumps caused by a precessing accretion disc. Doppler tomography of a broad Halpha emission line reveals an emission ring, consistent with that expected from an accretion disc. Using the velocity of the emission ring as an estimate for the projected outer disc velocity, we constrain the maximum projected velocity of the secondary to be 200 km/s, placing a lower limit of 0.05 Msun on the secondary mass. For a 1.4 Msun primary, this implies that the orbital inclination is low, < 20 degrees. Utilizing the observed relationship between the secondary mass and orbital period in short period cataclysmic variables, we estimate the secondary mass to be ~0.085 Msun, which implies an upper limit of ~2.4 Msun for the primary mass.
Pulsar timing has enabled some of the strongest tests of fundamental physics. Central to the technique is the assumption that the detected radio pulses can be used to accurately measure the rotation of the pulsar. Here we report on a broad-band variation in the pulse profile of the millisecond pulsar J1643-1224. A new component of emission suddenly appears in the pulse profile, decays over 4 months, and results in a permanently modified pulse shape. Profile variations such as these may be the origin of timing noise observed in other millisecond pulsars. The sensitivity of pulsar-timing observations to gravitational radiation can be increased by accounting for this variability.
We present ongoing Rossi X-ray Timing Explorer (RXTE) monitoring observations of the 377.3 Hz accretion-powered pulsar, HETE J1900.1-2455 Activity continues in this system more than 3 years after discovery, at a mean luminosity of 4.4e36 erg/s (for d=5 kpc), although pulsations were present only within the first 70 days. X-ray variability has increased each year, notably with a brief interval of nondetection in 2007, during which the luminosity dropped to below 1e-3 of the mean level. A deep search of data from the intervals of nondetection in 2005 revealed evidence for extremely weak pulsations at an amplitude of 0.29% rms, a factor of ten less than the largest amplitude seen early in the outburst. X-ray burst activity continued through 2008, with bursts typically featuring strong radius expansion. Spectral analysis of the most intense burst detected by RXTE early in the outburst revealed unusual variations in the inferred photospheric radius, as well as significant deviations from a blackbody. We obtained much better fits instead with a comptonisation model.
136 - A. Patruno 2012
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.
103 - A. Sanna , A. Papitto , L. Burderi 2016
We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $sim339.97$ Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{odot}$, which assumes a neutron star mass of 1.4 M$_{odot}$ and a maximum inclination angle of $75^{circ}$ (derived from the lack of eclipses and dips in the light-curve of the source). We find that the companion stars Roche-Lobe could either be filled by a hot ($5times 10^{6}$ K) pure helium white dwarf with a 0.028 M$_{odot}$ mass (implying $isimeq58^{circ}$) or an old (>5 Gyr) brown dwarf with metallicity abundances between solar/sub-solar and mass ranging in the interval 0.065$-$0.085 M$_{odot}$ (16 < $i$ < 21). During the outburst the broad-band energy spectra are well described by a superposition of a weak black-body component (kT$sim$ 0.5 keV) and a hard cutoff power-law with photon index $Gamma sim$ 1.7 and cut-off at a temperature kT$_esim$ 130 keV. Up to the latest Swift-XRT observation performed on 2016 July 19 the source has been observed in outburst for almost 150 days, which makes MAXI J0911-655 the second accreting millisecond X-ray pulsar with outburst duration longer than 100 days.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا