Do you want to publish a course? Click here

Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

104   0   0.0 ( 0 )
 Added by Andrea Sanna
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $sim339.97$ Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{odot}$, which assumes a neutron star mass of 1.4 M$_{odot}$ and a maximum inclination angle of $75^{circ}$ (derived from the lack of eclipses and dips in the light-curve of the source). We find that the companion stars Roche-Lobe could either be filled by a hot ($5times 10^{6}$ K) pure helium white dwarf with a 0.028 M$_{odot}$ mass (implying $isimeq58^{circ}$) or an old (>5 Gyr) brown dwarf with metallicity abundances between solar/sub-solar and mass ranging in the interval 0.065$-$0.085 M$_{odot}$ (16 < $i$ < 21). During the outburst the broad-band energy spectra are well described by a superposition of a weak black-body component (kT$sim$ 0.5 keV) and a hard cutoff power-law with photon index $Gamma sim$ 1.7 and cut-off at a temperature kT$_esim$ 130 keV. Up to the latest Swift-XRT observation performed on 2016 July 19 the source has been observed in outburst for almost 150 days, which makes MAXI J0911-655 the second accreting millisecond X-ray pulsar with outburst duration longer than 100 days.



rate research

Read More

We report the discovery of the second accreting millisecond X-ray pulsar (AMXP) in the globular cluster NGC 6440. Pulsations with a frequency of 205.89 Hz were detected with the Rossi X-Ray Timing Explorer on August 30th, October 1st and October 28th, 2009, during the decays of ~4 day outbursts of a newly X-ray transient source in NGC 6440. By studying the Doppler shift of the pulsation frequency, we find that the system is an ultra-compact binary with an orbital period of 57.3 minutes and a projected semi-major axis of 6.22 light-milliseconds. Based on the mass function, we estimate a lower limit to the mass of the companion to be 0.0067 M_sun (assuming a 1.4 M_sun neutron star). This new pulsar shows the shortest outburst recurrence time among AMXPs (~1 month). If this behavior does not cease, this AMXP has the potential to be one of the best sources in which to study how the binary system and the neutron star spin evolve. Furthermore, the characteristics of this new source indicate that there might exist a population of AMXPs undergoing weak outbursts which are undetected by current all-sky X-ray monitors. NGC 6440 is the only globular cluster to host two known AMXPs, while no AMXPs have been detected in any other globular cluster.
108 - A. Sanna , C. Ferrigno , P. S. Ray 2018
We report on the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342, detecting coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation. This implies an orbital period of ~8.8 hours and a projected semi-major axis of ~1.23 lt-s. From the binary mass function, we estimate a minimum companion mass of 0.42 solar masses, obtained assuming a neutron star mass of 1.4 solar masses and an inclination angle lower than 60 degrees, as suggested by the absence of eclipses or dips in the light-curve of the source. The broad-band energy spectrum is dominated by Comptonisation of soft thermal seed photons with a temperature of ~0.7 keV by electrons heated to 21 keV. We also detect black-body-like thermal direct emission compatible with an emission region of a few kilometers and temperature compatible with the seed source of Comptonisation. A weak Gaussian line centered on the iron K-alpha; complex can be interpreted as a signature of disc reflection. A similar spectrum characterises the NICER spectra, measured during the outburst fading.
171 - L. M. Forestell 2014
We combine new and archival Chandra observations of the globular cluster NGC 6752 to create a deeper X-ray source list, and study the faint radio millisecond pulsars (MSPs) of this cluster. We detect four of the five MSPs in NGC 6752, and present evidence for emission from the fifth. The X-rays from these MSPs are consistent with thermal emission from the neutron star surfaces, with significantly higher fitted blackbody temperatures than other globular cluster MSPs (though we cannot rule out contamination by nonthermal emission or other X-ray sources). NGC 6752 E is one of the lowest-L_X MSPs known, with L_X(0.3-8 keV)=1.0+0.9-0.5*10^30 ergs/s. We check for optical counterparts of the three isolated MSPs in the core using new HST ACS images, finding no plausible counterparts, which is consistent with their lack of binary companions. We compile measurements of L_X and spindown power for radio MSPs from the literature, including errors where feasible. We find no evidence that isolated MSPs have lower L_X than MSPs in binary systems, omitting binary MSPs showing emission from intrabinary wind shocks. We find weak evidence for an inverse correlation between the estimated temperature of the MSP X-rays and the known MSP spin period, consistent with the predicted shrinking of the MSP polar cap size with increasing spin period.
We present an analysis of 745.6 ks of archival Chandra X-ray Observatory Advanced CCD Imaging Spectrometer data accumulated between 2000 and 2016 of the millisecond pulsar (MSP) population in the rich Galactic globular cluster Terzan 5. Eight of the 37 MSPs with precise positions are found to have plausible X-ray source matches. Despite the deep exposure, the remaining MSPs are either marginally detected or have no obvious X-ray counterparts, which can be attributed to the typically soft thermal spectra of rotation-powered MSPs, which are strongly attenuated by the high intervening absorbing column (~$10^{22}$ cm$^{-2}$) towards the cluster, and in some instances severe source crowding/blending. For the redback MSP binaries, PSRs J1748-2446P and J1748-2446ad, and the black widow binary PSRs J1748-2446O, we find clear evidence for large-amplitude X-ray variability at the orbital period consistent with an intrabinary shock origin. The third redback MSP in the cluster, PSR J1748-2446A, shows large amplitude variations in flux on time scales of years, possibility due to state transitions or intense flaring episodes from the secondary star.
129 - A. Patruno 2012
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا