No Arabic abstract
We propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, which significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand the electronic excitations in water and to develop accurate polarizable force fields of water.
Black arsenic (BAs) is a van der Waals layered material with a puckered honeycomb structure and has received increased interest due to its anisotropic properties and promising performance in devices. Here, crystalline structure, thickness-dependent dielectric responses, and ambient stability of BAs nanosheets are investigated using STEM imaging and spectroscopy. Atomic-resolution HAADF-STEM images directly visualize the three-dimensional structure and evaluate the degree of anisotropy. STEM-EELS is used to measure the dielectric response of BAs as a function of the number of layers. Finally, BAs degradation under different ambient environments is studied highlighting high sensitivity to moisture in the air.
The static dielectric response of C60, C180, C240, C540, C720, C960, C1500, and C2160 fullerenes is characterized by an all-electron density-functional method. First, the screened polarizabilities of C60, C180, C240, and C540, are determined by the finite-field method using Gaussian basis set containing 35 basis functions per atom. In the second set of calculations, the unscreened polarizabilities are calculated for fullerenes C60 through C2160 from the self-consistent Kohn-Sham orbitals and eigen-values using the sum-over-states method. The approximate screened polarizabilities, obtained by applying a correction determined within linear response theory show excellent agreement with the finite-field polarizabilities. The static dipole polarizability per atom in C2160 is (4 Angstrom^3) three times larger than that in C60 (1.344 Angstrom^3). Our results reduce the uncertainty in various theoretical models used previously to describe the dielectric response of fullerenes and show that quantum size effects in polarizability are significantly smaller than previously thought.
The dielectric constant, which defines the polarization of the media, is a key quantity in condensed matter. It determines several electronic and optoelectronic properties important for a plethora of modern technologies from computer memory to field effect transistors and communication circuits. Moreover, the importance of the dielectric constant in describing electromagnetic interactions through screening plays a critical role in understanding fundamental molecular interactions. Here we show that despite its fundamental transcendence, the dielectric constant does not define unequivocally the dielectric properties of two-dimensional (2D) materials due to the locality of their electrostatic screening. Instead, the electronic polarizability correctly captures the dielectric nature of a 2D material which is united to other physical quantities in an atomically thin layer. We reveal a long-sought universal formalism where electronic, geometrical and dielectric properties are intrinsically correlated through the polarizability opening the door to probe quantities yet not directly measurable including the real covalent thickness of a layer. We unify the concept of dielectric properties in any material dimension finding a global dielectric anisotropy index defining their controllability through dimensionality.
We combine ab initio simulations and Raman scattering measurements to demonstrate explicit anharmonic effects in the temperature dependent dielectric response of a NaCl single crystal. We measure the temperature evolution of its Raman spectrum and compare it to both a quasi-harmonic and anharmonic model. Results demonstrate the necessity of including anharmonic lattice dynamics to explain the dielectric response of NaCl, as it is manifested in Raman scattering. Our model fully captures the linear dielectric response of a crystal at finite temperatures and may therefore be used to calculate the temperature dependence of other material properties governed by it.
Two-dimensional charge carrier accumulation at oxide heterointerfaces presents a paradigm shift for oxide electronics. Like a capacitor, interfacial charge buildup couples to an electric field across the dielectric medium. To prevent the so-called polar catastrophe, several charge screening mechanisms emerge, including polar distortions and interfacial intermixing which reduce the sharpness of the interface. Here, we examine how atomic intermixing at oxide interfaces affect the balance between polar distortions and electric potential across the dielectric medium. We find that intermixing moves the peak charge distribution away from the oxide/oxide interface; thereby changing the direction of polar distortions away from this boundary with minimal effect on the electric field. This opposing electric field and polar distortions is equivalent to the transient phase transition tipping point observed in double well ferroelectrics; resulting in an anomalous dielectric response -- a possible signature of local negative differential capacitance, with implications for designing dissipationless oxide electronics.