Do you want to publish a course? Click here

Electronic polarizability as the fundamental variable in the dielectric properties of two-dimensional materials

132   0   0.0 ( 0 )
 Added by Tian Tian
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dielectric constant, which defines the polarization of the media, is a key quantity in condensed matter. It determines several electronic and optoelectronic properties important for a plethora of modern technologies from computer memory to field effect transistors and communication circuits. Moreover, the importance of the dielectric constant in describing electromagnetic interactions through screening plays a critical role in understanding fundamental molecular interactions. Here we show that despite its fundamental transcendence, the dielectric constant does not define unequivocally the dielectric properties of two-dimensional (2D) materials due to the locality of their electrostatic screening. Instead, the electronic polarizability correctly captures the dielectric nature of a 2D material which is united to other physical quantities in an atomically thin layer. We reveal a long-sought universal formalism where electronic, geometrical and dielectric properties are intrinsically correlated through the polarizability opening the door to probe quantities yet not directly measurable including the real covalent thickness of a layer. We unify the concept of dielectric properties in any material dimension finding a global dielectric anisotropy index defining their controllability through dimensionality.



rate research

Read More

The two-dimensional (2D) semiconductor indium selenide (InSe) has attracted significant interest due its unique electronic band structure, high electron mobility and wide tunability of its band gap energy achieved by varying the layer thickness. All these features make 2D InSe a potential candidate for advanced electronic and optoelectronic applications. Here, we report on the discovery of new polymorphs of InSe with enhanced electronic properties. Using a global structure search that combines artificial swarm intelligence with first-principles energetic calculations, we identify polymorphs that consist of a centrosymmetric monolayer belonging to the point group D$_{3d}$, distinct from the well-known polymorphs based on the D$_{3h}$ monolayers that lack inversion symmetry. The new polymorphs are thermodynamically and kinetically stable, and exhibit a wider optical spectral response and larger electron mobilities compared to the known polymorphs. We discuss opportunities to synthesize these newly discovered polymorphs and viable routes to identify them by X-ray diffraction, Raman spectroscopy and second harmonic generation experiments.
Here, we examine the influence of surface chemical reactivity toward ambient gases on the performance of nanodevices based on two-dimensional materials beyond graphene and novel topological phases of matter. While surface oxidation in ambient conditions was observed for silicene and phosphorene with subsequent reduction of the mobility of charge carriers, nanodevices with active channels of indium selenide, bismuth chalcogenides and transition-metal dichalcogenides are stable in air. However, air-exposed indium selenide suffers of p-type doping due to water decomposition on Se vacancies, whereas the low mobility of charge carriers in transition-metal dichalcogenides increases the response time of nanodevices. Conversely, bismuth chalcogenides require a control of crystalline quality, which could represent a serious hurdle for up scaling.
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal BN, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.
We report results of investigation of the phonon and thermal properties of the exfoliated films of layered single crystals of antiferromagnetic FePS3 and MnPS3 semiconductors. The Raman spectroscopy was conducted using three different excitation lasers with the wavelengths of 325 nm (UV), 488 nm (blue), and 633 nm (red). The resonant UV-Raman spectroscopy reveals new spectral features, which are not detectable via visible Raman light scattering. The thermal conductivity of FePS3 and MnPS3 thin films was measured by two different techniques: the steady-state Raman optothermal and transient time-resolved magneto-optical Kerr effect. The Raman optothermal measurements provided the orientation-average thermal conductivity of FePS3 to be 1.35 W/mK at room temperature. The transient measurements revealed that the through-plane and in-plane thermal conductivity of FePS3 is 0.85 W/mK and 2.7 W/mK, respectively. The films of MnPS3 have higher thermal conductivity of 1.1 W/mK through-plane and 6.3 W/mK in-plane. The data obtained by both techniques reveal strong thermal anisotropy of the films and the dominant contribution of phonons to heat conduction. Our results are important for the proposed applications of the antiferromagnetic semiconductor thin films in spintronic devices.
Herein, we demonstrate that first-principles calculations can be used for mapping electronic properties of two-dimensional (2d) materials with respect to non-uniform strain. By investigating four representative single-layer 2d compounds with different symmetries and bonding characters, namely 2d-${MoS_2}$, phosphorene, ${alpha}$-Te, and ${beta}$-Te, we reveal that such a mapping can be an effective guidance for advanced strain engineering and development of strain-tunable nanoelectronics devices, including transistors, sensors, and photodetectors. Thus, we show that ${alpha}$-Te and ${beta}$-Te are considerably more elastic compared to the 2d compounds with strong chemical bonding. In case of ${beta}$-Te, the mapping uncovers an existence of curious regimes where non-uniform deformations allow to achieve unique localization of band edges in momentum space that cannot be realized under either uniform or uniaxial deformations. For all other systems, the strain mapping is shown to provide deeper insight into the known trends of band gap modulation and direct-indirect transitions under strain. Hence, we prove that the standard way of analyzing selected strain directions is insufficient for some 2d systems, and a more general mapping strategy should be employed instead.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا