Do you want to publish a course? Click here

Tracing HI Beyond the Local Universe

72   0   0.0 ( 0 )
 Added by Martin Meyer
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The SKA and its pathfinders will enable studies of HI emission at higher redshifts than ever before. In moving beyond the local Universe, this will require the use of cosmologically appropriate formulae that have traditionally been simplified to their low-redshift approximations. In this paper, we summarise some of the most important relations for tracing HI emission in the SKA era, and present an online calculator to assist in the planning and analysis of observations (hifi.icrar.org).

rate research

Read More

We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quantify whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffreys scale. We find that in the framework of the LCDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in strong tension with the local measurements; the odds being ~ 1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the LCDM model. In some one-parameter LCDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension highly significant (odds ~ 1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavoured by cosmological data and the direct hierarchy is slightly favored over the inverse.
We introduce the LOCal Universe Screening Test Suite (LOCUSTS) project, an effort to create screening maps in the nearby Universe to identify regions in our neighbourhood which are screened, i.e., regions where deviations from General Relativity (GR) are suppressed, in various modified gravity (MG) models. In these models, deviations from the GR force law are often stronger for smaller astrophysical objects, making them ideal test beds of gravity in the local Universe. However, the actual behaviour of the modified gravity force also depends on the environment of the objects, and to make accurate predictions one has to take the latter into account. This can be done approximately using luminous objects in the local Universe as tracers of the underlying dark matter field. Here, we propose a new approach that takes advantage of state-of-the-art Bayesian reconstruction of the mass distribution in the Universe, which allows us to solve the modified gravity equations and predict the screening effect more accurately. This is the first of a series of works, in which we present our methodology and some qualitative results of screening for a specific MG model, $f(R)$ gravity. Applications to test models using observations and extensions to other classes of models will be studied in future works.
88 - M. S. Bothwell 2011
We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z ~ 0, selected at IR and UV wavelengths from the IRAS IIFSCz catalogue, and the GALEX AIS respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy Survey (LVL), allowing us to extend these luminosity functions to lower luminosities (~10^6 L_sun), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the SFR distribution function for the local Universe. We find that it has a Schechter form, that the faint-end slope has a constant value (to the limits of our data) of {alpha} = -1.51 pm 0.08, and the characteristic SFR is 9.2 M_sun/yr. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z ~ 0 of 0.025 pm 0.0016 M_sun/yr/Mpc^-3, of which ~ 20% is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 pm 1% is due to LIRGs, and 0.7 pm 0.2% is occuring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line of sight orientation effects as well as conventional internal extinction.
A set of HI sources extracted from the north Galactic polar region by the ongoing ALFALFA survey has properties that are consistent with the interpretation that they are associated with isolated minihalos in the outskirts of the Local Group (LG). Unlike objects detected by previous surveys, such as the Compact High Velocity Clouds of Braun & Burton (1999), the HI clouds found by ALFALFA do not violate any structural requirements or halo scaling laws of the LambdaCDM structure paradigm, nor would they have been detected by extant HI surveys of nearby galaxy groups other than the LG. At a distance of d Mpc, their HI masses range between $5 x 10^4 d^2 and 10^6 d^2 solar and their HI radii between <0.4d and 1.6 d kpc. If they are parts of gravitationally bound halos, the total masses would be on order of 10^8--10^9 solar, their baryonic content would be signifcantly smaller than the cosmic fraction of 0.16 and present in a ionized gas phase of mass well exceeding that of the neutral phase. This study does not however prove that the minihalo interpretation is unique. Among possible alternatives would be that the clouds are shreds of the Leading Arm of the Magellanic Stream.
Sterile neutrinos comprise an entire class of dark matter models that, depending on their production mechanism, can be hot, warm, or cold dark matter. We simulate the Local Group and representative volumes of the Universe in a variety of sterile neutrino models, all of which are consistent with the possible existence of a radiative decay line at ~3.5 keV. We compare models of production via resonances in the presence of a lepton asymmetry (suggested by Shi & Fuller 1999) to thermal models. We find that properties in the highly nonlinear regime - e.g., counts of satellites and internal properties of halos and subhalos - are insensitive to the precise fall-off in power with wavenumber, indicating that nonlinear evolution essentially washes away differences in the initial (linear) matter power spectrum. In the quasi-linear regime at higher redshifts, however, quantitative differences in the 3D matter power spectra remain, raising the possibility that such models can be tested with future observations of the Lyman-alpha forest. While many of the sterile neutrino models largely eliminate multiple small-scale issues within the Cold Dark Matter (CDM) paradigm, we show that these models may be ruled out in the near future via discoveries of additional dwarf satellites in the Local Group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا