Do you want to publish a course? Click here

Screening maps of the local Universe I -- Methodology

89   0   0.0 ( 0 )
 Added by Shi Shao
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the LOCal Universe Screening Test Suite (LOCUSTS) project, an effort to create screening maps in the nearby Universe to identify regions in our neighbourhood which are screened, i.e., regions where deviations from General Relativity (GR) are suppressed, in various modified gravity (MG) models. In these models, deviations from the GR force law are often stronger for smaller astrophysical objects, making them ideal test beds of gravity in the local Universe. However, the actual behaviour of the modified gravity force also depends on the environment of the objects, and to make accurate predictions one has to take the latter into account. This can be done approximately using luminous objects in the local Universe as tracers of the underlying dark matter field. Here, we propose a new approach that takes advantage of state-of-the-art Bayesian reconstruction of the mass distribution in the Universe, which allows us to solve the modified gravity equations and predict the screening effect more accurately. This is the first of a series of works, in which we present our methodology and some qualitative results of screening for a specific MG model, $f(R)$ gravity. Applications to test models using observations and extensions to other classes of models will be studied in future works.

rate research

Read More

The SKA and its pathfinders will enable studies of HI emission at higher redshifts than ever before. In moving beyond the local Universe, this will require the use of cosmologically appropriate formulae that have traditionally been simplified to their low-redshift approximations. In this paper, we summarise some of the most important relations for tracing HI emission in the SKA era, and present an online calculator to assist in the planning and analysis of observations (hifi.icrar.org).
We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quantify whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffreys scale. We find that in the framework of the LCDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in strong tension with the local measurements; the odds being ~ 1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the LCDM model. In some one-parameter LCDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension highly significant (odds ~ 1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavoured by cosmological data and the direct hierarchy is slightly favored over the inverse.
88 - M. S. Bothwell 2011
We present total infrared (IR) and ultraviolet (UV) luminosity functions derived from large representative samples of galaxies at z ~ 0, selected at IR and UV wavelengths from the IRAS IIFSCz catalogue, and the GALEX AIS respectively. We augment these with deep Spitzer and GALEX imaging of galaxies in the 11 Mpc Local Volume Legacy Survey (LVL), allowing us to extend these luminosity functions to lower luminosities (~10^6 L_sun), and providing good constraints on the slope of the luminosity function at the extreme faint end for the first time. Using conventional star formation prescriptions, we generate from our data the SFR distribution function for the local Universe. We find that it has a Schechter form, that the faint-end slope has a constant value (to the limits of our data) of {alpha} = -1.51 pm 0.08, and the characteristic SFR is 9.2 M_sun/yr. We also show the distribution function of the SFR volume density; we then use this to calculate a value for the total SFR volume density at z ~ 0 of 0.025 pm 0.0016 M_sun/yr/Mpc^-3, of which ~ 20% is occurring in starbursts. Decomposing the total star formation by infrared luminosity, it can be seen that 9 pm 1% is due to LIRGs, and 0.7 pm 0.2% is occuring in ULIRGs. By comparing UV and IR emission for galaxies in our sample, we also calculate the fraction of star formation occurring in dust obscured environments, and examine the distribution of dusty star formation: we find a very shallow slope at the highly extincted end, which may be attributable to line of sight orientation effects as well as conventional internal extinction.
213 - Yi Mao 2011
The peculiar velocity of the intergalactic gas responsible for the cosmic 21cm background from the epoch of reionization and beyond introduces an anisotropy in the three-dimensional power spectrum of brightness temperature fluctuations. Measurement of this anisotropy by future 21cm surveys is a promising tool for separating cosmology from 21cm astrophysics. However, previous attempts to model the signal have often neglected peculiar velocity or only approximated it crudely. This paper re-examines the effects of peculiar velocity on the 21cm signal in detail, improving upon past treatment and addressing several issues for the first time. (1) We show that properly accounting for finite optical depth eliminates the unphysical divergence of 21cm brightness temperature in overdense regions of the IGM found by previous work that employed the usual optically-thin approximation. (2) The approximation made previously to circumvent the diverging brightness temperature problem by capping velocity gradient can misestimate the power spectrum on all scales. (3) The observed power spectrum in redshift-space remains finite even in the optically-thin approximation if one properly accounts for the redshift-space distortion. However, results that take full account of finite optical depth show that this approximation is only accurate in the limit of high spin temperature. (4) The linear theory for redshift-space distortion results in ~30% error in the observationally relevant wavenumber range, at the 50% ionized epoch. (5) We describe and test two numerical schemes to calculate the 21cm signal from reionization simulations to incorporate peculiar velocity effects in the optically-thin approximation accurately. One is particle-based, the other grid-based, and while the former is most accurate, we demonstrate that the latter is computationally more efficient and can achieve sufficient accuracy. [Abridged]
High resolution spectral models for simple stellar populations (SSP) developed in the past few years have become a standard ingredient in studies of stellar population of galaxies. As more such models become available, it becomes increasingly important to test them. In this and a companion paper, we test a suite of publicly available evolutionary synthesis models using integrated optical spectra in the blue-near-UV range of 27 well studied star clusters from the work of Leonardi & Rose (2003) spanning a wide range of ages and metallicities. Most (23) of the clusters are from the Magellanic clouds. This paper concentrates on methodological aspects of spectral fitting. The data are fitted with SSP spectral models from Vazdekis and collaborators, based on the MILES library. Best-fit and Bayesian estimates of age, metallicity and extinction are presented, and degeneracies between these parameters are mapped. We find that these models can match the observed spectra very well in most cases, with small formal uncertainties in t, Z and A_V. In some cases, the spectral fits indicate that the models lack a blue old population, probably associated with the horizontal branch. This methodology, which is mostly based on the publicly available code STARLIGHT, is extended to other sets of models in Paper II, where a comparison with properties derived from spatially resolved data (color-magnitude diagrams) is presented. The global aim of these two papers is to provide guidance to users of evolutionary synthesis models and empirical feedback to model makers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا