Do you want to publish a course? Click here

Symmetric Achromatic Variability in Active Galaxies -- A Powerful New Gravitational Lensing Probe?

89   0   0.0 ( 0 )
 Added by Harish Vedantham Mr
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a rare new form of long-term radio variability in the light-curves of active galaxies (AG) --- Symmetric Achromatic Variability (SAV) --- a pair of opposed and strongly skewed peaks in the radio flux density observed over a broad frequency range. We propose that SAV arises through gravitational milli-lensing when relativistically moving features in AG jets move through gravitational lensing caustics created by $10^3-10^6 ;{rm M}_{odot}$ subhalo condensates or black holes located within intervening galaxies. The lower end of this mass range has been inaccessible with previous gravitational lensing techniques. This new interpretation of some AG variability can easily be tested and if it passes these tests, will enable a new and powerful probe of cosmological matter distribution on these intermediate mass scales, as well as provide, for the first time, micro-arcsecond resolution of the nuclei of AG --- a factor of 30--100 greater resolution than is possible with ground-based millimeter VLBI.



rate research

Read More

Dedicated searches generally find a decreasing fraction of obscured Active Galactic Nuclei (AGN) with increasing AGN luminosity. This has often been interpreted as evidence for a decrease of the covering factor of the AGN torus with increasing luminosity, the so-called receding torus models. Using a complete flux-limited X-ray selected sample of 199 AGN, from the Bright Ultra-hard XMM-Newton Survey, we determine the intrinsic fraction of optical type-2 AGN at 0.05$leq$z$leq$1 as a function of rest-frame 2-10 keV X-ray luminosity from 10$^{42}$ to 10$^{45}$ erg/s. We use the distributions of covering factors of AGN tori derived from CLUMPY torus models. Since these distributions combined over the total AGN population need to match the intrinsic type-2 AGN fraction, we reveal a population of X-ray undetected objects with high-covering factor tori, which are increasingly numerous at higher AGN luminosities. When these missing objects are included, we find that Compton-thick AGN account at most for 37$_{-10}^{+9}$% of the total population. The intrinsic type-2 AGN fraction is 58$pm$4% and has a weak, non-significant (less than 2$sigma$) luminosity dependence. This contradicts the results generally reported by AGN surveys, and the expectations from receding torus models. Our findings imply that the majority of luminous rapidly-accreting supermassive black holes at z<1 reside in highly-obscured nuclear environments but most of them are so deeply embedded that they have so far escaped detection in X-rays in <10 keV wide-area surveys.
Intermediate redshifts between galaxy surveys and the cosmic microwave background (CMB) remain unexplored territory. Line intensity mapping (LIM) offers a way to probe the $zgtrsim 1$ Universe, including the epoch of reionization and the dark ages. Via exact nulling of the lensing kernel, we show that LIM lensing, in combination with galaxy (resp., CMB) lensing, can uniquely probe the $zgtrsim 1$ (resp., pre-reionization) Universe. However, LIM foregrounds are a key hurdle to this futuristic technique. While continuum foregrounds can be controlled by discarding modes perpendicular to the line of sight (low $k_parallel$ modes), interloper foregrounds havent been addressed in the context of LIM lensing. In this paper, we quantify the interloper bias to LIM lensing for the first time, and derive a LIM-pair estimator which avoids it exactly after cross-correlating with CMB lensing. This new quadratic lensing estimator works by combining two intensity maps in different lines, from the same redshift, whose interlopers are uncorrelated. As a result, this foreground avoidance method is robust to even large changes in the amplitude of the interloper power and non-Gaussianity. The cross-spectrum of the LIM-pair estimator with CMB lensing is thus robust to the currently large theoretical uncertainties in LIM modeling at high redshift.
We present a framework for studying gravitational lensing in spherically symmetric spacetimes using 1+1+2 covariant methods. A general formula for the deflection angle is derived and we show how this can be used to recover the standard result for the Schwarzschild spacetime.
We present the results of a multi-wavelength follow up campaign for the luminous nuclear transient Gaia16aax, which was first identified in January 2016. The transient is spatially consistent with the nucleus of an active galaxy at z=0.25, hosting a black hole of mass $rm sim6times10^8M_odot$. The nucleus brightened by more than 1 magnitude in the Gaia G-band over a timescale of less than one year, before fading back to its pre-outburst state over the following three years. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the $rm Halpha$ and $rm Hbeta$ emission lines develop a secondary peak. We also report on the discovery of two transients with similar light curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disk. We consider variability in the accretion flow in the inner part of the disk, or a tidal disruption event of a star $geq 1 M_{odot}$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria.
Current X-ray observations and simulations show that gravitational lensing can be used to infer the structure near the event horizons of black holes, constrain the dynamics and evolution of black-hole accretion and outflows, test general relativity in the strong-gravity regime and place constraints on the evolution of dark matter in the lensing galaxies. These science goals currently cannot be achieved in a statistically large sample of z = 0.5 - 5 lensed quasars due to the limited capabilities of current X-ray telescopes and the relatively low number (~200) of known lensed quasars. The latter limitation will be resolved with the multi-band and wide-field photometric optical survey of LSST that is expected to lead to the discovery of > 4,000 additional gravitationally lensed systems. As we show in this white paper, these science goals can be reached with an X-ray telescope having a spatial resolution of <0.5arcsec to resolve the lensed images and a collecting area of >0.5 m^2 at 1 keV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا