Do you want to publish a course? Click here

Modulational Instability in Linearly Coupled Asymmetric Dual-Core Fibers

111   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate modulational instability (MI) in asymmetric dual-core nonlinear directional couplers incorporating the effects of the differences in effective mode areas and group velocity dispersions, as well as phase- and group-velocity mismatches. Using coupled-mode equations for this system, we identify MI conditions from the linearization with respect to small perturbations. First, we compare the MI spectra of the asymmetric system and its symmetric counterpart in the case of the anomalous group-velocity dispersion (GVD). In particular, it is demonstrated that the increase of the inter-core linear-coupling coefficient leads to a reduction of the MI gain spectrum in the asymmetric coupler. The analysis is extended for the asymmetric system in the normal-GVD regime, where the coupling induces and controls the MI, as well as for the system with opposite GVD signs in the two cores. Following the analytical consideration of the MI, numerical simulations are carried out to explore nonlinear development of the MI, revealing the generation of periodic chains of localized peaks with growing amplitudes, which may transform into arrays of solitons.



rate research

Read More

148 - Nir Dror , Boris A. Malomed 2010
It is well known that the two-dimensional (2D) nonlinear Schrodinger equation (NLSE) with the cubic-quintic (CQ) nonlinearity supports a family of stable fundamental solitons, as well as solitary vortices (alias vortex rings), which are stable for sufficiently large values of the norm. We study stationary localized modes in a symmetric linearly coupled system of two such equations, focusing on asymmetric states. The model may describe optical bullets in dual-core nonlinear optical waveguides (including spatiotemporal vortices that were not discussed before), or a Bose-Einstein condensate (BEC) loaded into a dual-pancake trap. Each family of solutions in the single-component model has two different counterparts in the coupled system, one symmetric and one asymmetric. Similarly to the earlier studied coupled 1D system with the CQ nonlinearity, the present model features bifurcation loops, for fundamental and vortex solitons alike: with the increase of the total energy (norm), the symmetric solitons become unstable at a point of the direct bifurcation, which is followed, at larger values of the energy, by the reverse bifurcation restabilizing the symmetric solitons. However, on the contrary to the 1D system, the system may demonstrate a double bistability for the fundamental solitons. The stability of the solitons is investigated via the computation of instability growth rates for small perturbations. Vortex rings, which we study for two values of the spin, s = 1 and 2, may be subject to the azimuthal instability, like in the single-component model. We also develop a quasi-analytical approach to the description of the bifurcations diagrams, based on the variational approximation. Splitting of asymmetric vortices, induced by the azimuthal instability, is studied by means of direct simulations. Interactions between initially quiescent solitons of different types are studied too.
We study, both theoretically and experimentally, modulational instability in optical fibers that have a longitudinal evolution of their dispersion in the form of a Dirac delta comb. By means of Floquet theory, we obtain an exact expression for the position of the gain bands, and we provide simple analytical estimates of the gain and of the bandwidths of those sidebands. An experimental validation of those results has been realized in several microstructured fibers specifically manufactured for that purpose. The dispersion landscape of those fibers is a comb of Gaussian pulses having widths much shorter than the period, which therefore approximate the ideal Dirac comb. Experimental spontaneous MI spectra recorded under quasi continuous wave excitation are in good agreement with the theory and with numerical simulations based on the generalized nonlinear Schrodinger equation.
We study modulational instability (MI) in optical fibers with random group velocity dispersion (GVD) generated by sharply localized perturbations of a normal GVD fiber that are either randomly or periodically placed along the fiber and that have random strength. This perturbation leads to the appearance of low frequency MI side lobes that grow with the strength of the perturbations, whereas they are faded by randomness in their position. If the random perturbations exhibit a finite average value, they can be compared with periodically perturbed fibers, where Arnold tongues appear. In that case, increased randomness in the strengths of the variations tends to affect the Arnold tongues less than increased randomness in their positions.
We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schr{o}dinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in the Lagrangian functional of the NLS in order to form a quasi-one-dimensional azimuthal equation of motion, and then applying a stability analysis in Fourier space of the azimuthal modes. We formulate predictions of growth rates of individual modes and find that vortices are unstable below a critical azimuthal wave number. Steady state vortex solutions are found by first using a variational approach to obtain an asymptotic analytical ansatz, and then using it as an initial condition to a numerical optimization routine. The stability analysis predictions are corroborated by direct numerical simulations of the NLS. We briefly show how to extend the method to encompass nonlocal nonlinearities that tend to stabilize solutions.
We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and can be represented as a lattice of overlapping solitons. MI of these lattices lead to development of integrable turbulence [Zakharov V.E., Stud. Appl. Math. 122, 219-234 (2009)]. We study the major characteristics of the turbulence for dn-branch of cnoidal waves and demonstrate how these characteristics depend on the degree of overlapping between the solitons within the cnoidal wave. Integrable turbulence, that develops from MI of dn-branch of cnoidal waves, asymptotically approaches to its stationary state in oscillatory way. During this process kinetic and potential energies oscillate around their asymptotic values. The amplitudes of these oscillations decay with time as t^{-a}, 1<a<1.5, the phases contain nonlinear phase shift decaying as t^{-1/2}, and the frequency of the oscillations is equal to the double maximal growth rate of the MI, s=2g_{max}. In the asymptotic stationary state the ratio of potential to kinetic energy is equal to -2. The asymptotic PDF of wave amplitudes is close to Rayleigh distribution for cnoidal waves with strong overlapping, and is significantly non-Rayleigh one for cnoidal waves with weak overlapping of solitons. In the latter case the dynamics of the system reduces to two-soliton collisions, which occur with exponentially small rate and provide up to two-fold increase in amplitude compared with the original cnoidal wave.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا