No Arabic abstract
We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schr{o}dinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in the Lagrangian functional of the NLS in order to form a quasi-one-dimensional azimuthal equation of motion, and then applying a stability analysis in Fourier space of the azimuthal modes. We formulate predictions of growth rates of individual modes and find that vortices are unstable below a critical azimuthal wave number. Steady state vortex solutions are found by first using a variational approach to obtain an asymptotic analytical ansatz, and then using it as an initial condition to a numerical optimization routine. The stability analysis predictions are corroborated by direct numerical simulations of the NLS. We briefly show how to extend the method to encompass nonlocal nonlinearities that tend to stabilize solutions.
The nonlinear stage of modulational instability in optical fibers induced by a wide and easily accessible class of localized perturbations is studied using the nonlinear Schrodinger equation. It is showed that the development of associated spatio-temporal patterns is strongly affected by the shape and the parameters of the perturbation. Different scenarios are presented that involve an auto-modulation developing in a characteristic wedge, possibly coexisting with breathers which lie inside or outside the wedge.
We report an optical fiber experiment in which we study nonlinear stage of modulational instability of a plane wave in the presence of a localized perturbation. Using a recirculating fiber loop as experimental platform, we show that the initial perturbation evolves into expanding nonlinear oscillatory structure exhibiting some universal characteristics that agree with theoretical predictions based on integrability properties of the focusing nonlinear Schrodinger equation. Our experimental results demonstrate persistence of the universal evolution scenario, even in the presence of small dissipation and noise in an experimental system that is not rigorously of an integrable nature.
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary dimension collapse does not occur. Then we study in detail the effect of singular nonlocal kernels in arbitrary dimension using both, Lyapunoffs method and virial identities. We find that for for a one-dimensional case, i.e. for $n=1$, collapse cannot happen for nonlocal nonlinearity. On the other hand, for spatial dimension $ngeq2$ and singular kernel $sim 1/r^alpha$, no collapse takes place if $alpha<2$, whereas collapse is possible if $alphage2$. Self-similar solutions allow us to find an expression for the critical distance (or time) at which collapse should occur in the particular case of $sim 1/r^2$ kernels. Moreover, different evolution scenarios for the three dimensional physically relevant case of Bose Einstein condensate are studied numerically for both, the ground state and a higher order toroidal state with and without an additional local repulsive nonlinear interaction. In particular, we show that presence of an additional local repulsive term can prevent collapse in those cases.
We show that the nonlinear stage of modulational instability induced by parametric driving in the {em defocusing} nonlinear Schrodinger equation can be accurately described by combining mode truncation and averaging methods, valid in the strong driving regime. The resulting integrable oscillator reveals a complex hidden heteroclinic structure of the instability. A remarkable consequence, validated by the numerical integration of the original model, is the existence of breather solutions separating different Fermi-Pasta-Ulam recurrent regimes. Our theory also shows that optimal parametric amplification unexpectedly occurs outside the bandwidth of the resonance (or Arnold tongues) arising from the linearised Floquet analysis.
Irrotational ow of a spherical thin liquid layer surrounding a rigid core is described using the defocusing nonlinear Schrodinger equation. Accordingly, azimuthal moving nonlinear waves are modeled by periodic dark solitons expressed by elliptic functions. In the quantum regime the algebraic Bethe ansatz is used in order to capture the energy levels of such motions, which we expect to be relevant for the dynamics of the nuclear clusters in deformed heavy nuclei surface modeled by quantum liquid drops. In order to validate the model we match our theoretical energy spectra with experimental results on energy, angular momentum and parity for alpha particle clustering nuclei.