No Arabic abstract
We investigate the ergodicity and hot solvent/cold solute problems in molecular dynamics simulations. While the kinetic moments and the stimulated Nose--Hoover methods improve the ergodicity of a harmonic-oscillator system, both methods exhibit the hot solvent/cold solute problem in a binary liquid system. These results show that the devices to improve the ergodicity do not resolve the hot solvent/cold solute problem.
We present the complete set of stochastic Verlet-type algorithms that can provide correct statistical measures for both configurational and kinetic sampling in discrete-time Langevin systems. The approach is a brute-force general representation of the Verlet-algorithm with free parameter coefficients that are determined by requiring correct Boltzmann sampling for linear systems, regardless of time step. The result is a set of statistically correct methods given by one free functional parameter, which can be interpreted as the one-time-step velocity attenuation factor. We define the statistical characteristics of both true on-site $v^n$ and true half-step $u^{n+frac{1}{2}}$ velocities, and use these definitions for each statistically correct Stormer-Verlet method to find a unique associated half-step velocity expression, which yields correct kinetic Maxwell-Boltzmann statistics for linear systems. It is shown that no other similar, statistically correct on-site velocity exists. We further discuss the use and features of finite-difference velocity definitions that are neither true on-site, nor true half-step. The set of methods is written in convenient and conventional stochastic Verlet forms that lend themselves to direct implementation for, e.g., Molecular Dynamics applications. We highlight a few specific examples, and validate the algorithms through comprehensive Langevin simulations of both simple nonlinear oscillators and complex Molecular Dynamics.
In light of the recently developed complete GJ set of single random variable stochastic, discrete-time St{o}rmer-Verlet algorithms for statistically accurate simulations of Langevin equations, we investigate two outstanding questions: 1) Are there any algorithmic or statistical benefits from including multiple random variables per time-step, and 2) are there objective reasons for using one or more methods from the available set of statistically correct algorithms? To address the first question, we assume a general form for the discrete-time equations with two random variables and then follow the systematic, brute-force GJ methodology by enforcing correct thermodynamics in linear systems. It is concluded that correct configurational Boltzmann sampling of a particle in a harmonic potential implies correct configurational free-particle diffusion, and that these requirements only can be accomplished if the two random variables per time step are identical. We consequently submit that the GJ set represents all possible stochastic St{o}rmer-Verlet methods that can reproduce time-step-independent statistics of linear systems. The second question is thus addressed within the GJ set. Based in part on numerical simulations of complex molecular systems, and in part on analytic scaling of time, we analyze the apparent difference in stability between different methods. We attribute this difference to the inherent time scaling in each method, and suggest that this scaling may lead to inconsistencies in the interpretation of dynamical and statistical simulation results. We therefore suggest that the method with the least inherent time-scaling, the GJ-I/GJF-2GJ method, be preferred for statistical applications where spurious rescaling of time is undesirable.
We solve the growing asymmetric Ising model [Phys. Rev. E 89, 012105 (2014)] in the topologies of deterministic and stochastic (random) scale-free trees predicting its non-monotonous behavior for external fields smaller than the coupling constant $J$. In both cases we indicate that the crossover temperature corresponding to maximal magnetization decays approximately as $(ln ln N)^{-1}$, where $N$ is the number of nodes in the tree.
The dynamics of macroscopically homogeneous sheared suspensions of neutrally buoyant, non-Brownian spheres is investigated in the limit of vanishingly small Reynolds numbers using Stokesian dynamics. We show that the complex dynamics of sheared suspensions can be characterized as a chaotic motion in phase space and determine the dependence of the largest Lyapunov exponent on the volume fraction $phi$. The loss of memory at the microscopic level of individual particles is also shown in terms of the autocorrelation functions for the two transverse velocity components. Moreover, a negative correlation in the transverse particle velocities is seen to exist at the lower concentrations, an effect which we explain on the basis of the dynamics of two isolated spheres undergoing simple shear. In addition, we calculate the probability distribution function of the velocity fluctuations and observe, with increasing $phi$, a transition from exponential to Gaussian distributions. The simulations include a non-hydrodynamic repulsive interaction between the spheres which qualitatively models the effects of surface roughness and other irreversible effects, such as residual Brownian displacements, that become particularly important whenever pairs of spheres are nearly touching. We investigate the effects of such a non-hydrodynamic interparticle force on the scaling of the particle tracer diffusion coefficient $D$ for very dilute suspensions, and show that, when this force is very short-ranged, $D$ becomes proportional to $phi^2$ as $phi to 0$. In contrast, when the range of the non-hydrodynamic interaction is increased, we observe a crossover in the dependence of $D$ on $phi$, from $phi^2$ to $phi$ as $phi to 0$.
Both the deterministic and stochastic sandpile models are studied on the percolation backbone, a random fractal, generated on a square lattice in $2$-dimensions. In spite of the underline random structure of the backbone, the deterministic Bak Tang Wiesenfeld (BTW) model preserves its positive time auto-correlation and multifractal behaviour due to its complete toppling balance, whereas the critical properties of the stochastic sandpile model (SSM) still exhibits finite size scaling (FSS) as it exhibits on the regular lattices. Analysing the topography of the avalanches, various scaling relations are developed. While for the SSM, the extended set of critical exponents obtained is found to obey various the scaling relation in terms of the fractal dimension $d_f^B$ of the backbone, whereas the deterministic BTW model, on the other hand, does not. As the critical exponents of the SSM defined on the backbone are related to $d_f^B$, the backbone fractal dimension, they are found to be entirely different from those of the SSM defined on the regular lattice as well as on other deterministic fractals. The SSM on the percolation backbone is found to obey FSS but belongs to a new stochastic universality class.