Do you want to publish a course? Click here

Complete Set of Stochastic Verlet-Type Thermostats for Correct Langevin Simulations

116   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the complete set of stochastic Verlet-type algorithms that can provide correct statistical measures for both configurational and kinetic sampling in discrete-time Langevin systems. The approach is a brute-force general representation of the Verlet-algorithm with free parameter coefficients that are determined by requiring correct Boltzmann sampling for linear systems, regardless of time step. The result is a set of statistically correct methods given by one free functional parameter, which can be interpreted as the one-time-step velocity attenuation factor. We define the statistical characteristics of both true on-site $v^n$ and true half-step $u^{n+frac{1}{2}}$ velocities, and use these definitions for each statistically correct Stormer-Verlet method to find a unique associated half-step velocity expression, which yields correct kinetic Maxwell-Boltzmann statistics for linear systems. It is shown that no other similar, statistically correct on-site velocity exists. We further discuss the use and features of finite-difference velocity definitions that are neither true on-site, nor true half-step. The set of methods is written in convenient and conventional stochastic Verlet forms that lend themselves to direct implementation for, e.g., Molecular Dynamics applications. We highlight a few specific examples, and validate the algorithms through comprehensive Langevin simulations of both simple nonlinear oscillators and complex Molecular Dynamics.



rate research

Read More

In light of the recently developed complete GJ set of single random variable stochastic, discrete-time St{o}rmer-Verlet algorithms for statistically accurate simulations of Langevin equations, we investigate two outstanding questions: 1) Are there any algorithmic or statistical benefits from including multiple random variables per time-step, and 2) are there objective reasons for using one or more methods from the available set of statistically correct algorithms? To address the first question, we assume a general form for the discrete-time equations with two random variables and then follow the systematic, brute-force GJ methodology by enforcing correct thermodynamics in linear systems. It is concluded that correct configurational Boltzmann sampling of a particle in a harmonic potential implies correct configurational free-particle diffusion, and that these requirements only can be accomplished if the two random variables per time step are identical. We consequently submit that the GJ set represents all possible stochastic St{o}rmer-Verlet methods that can reproduce time-step-independent statistics of linear systems. The second question is thus addressed within the GJ set. Based in part on numerical simulations of complex molecular systems, and in part on analytic scaling of time, we analyze the apparent difference in stability between different methods. We attribute this difference to the inherent time scaling in each method, and suggest that this scaling may lead to inconsistencies in the interpretation of dynamical and statistical simulation results. We therefore suggest that the method with the least inherent time-scaling, the GJ-I/GJF-2GJ method, be preferred for statistical applications where spurious rescaling of time is undesirable.
Using the recently published GJF-2GJ Langevin thermostat, which can produce time-step-independent statistical measures even for large time steps, we analyze and discuss the causes for abrupt deviations in statistical data as the time step is increased for some simulations of nonlinear oscillators. Exemplified by the pendulum, we identify a couple of discrete-time dynamical modes in the purely damped pendulum equation as the cause of the observed discrepancies in statistics. The existence, stability and kinetics of the modes are consistent with the acquired velocity distribution functions from Langevin simulations, and we conclude that the simulation deviations from physical expectations are not due to normal, systematic algorithmic time-step errors, but instead due to the inherent properties of discrete time in nonlinear dynamics.
We describe a hierarchy of stochastic boundary conditions (SBCs) that can be used to systematically eliminate finite size effects in Monte Carlo simulations of Ising lattices. For an Ising model on a $100 times 100$ square lattice, we measured the specific heat, the magnetic susceptibility, and the spin-spin correlation using SBCs of the two lowest orders, to show that they compare favourably against periodic boundary conditions (PBC) simulations and analytical results. To demonstrate how versatile the SBCs are, we then simulated an Ising lattice with a magnetized boundary, and another with an open boundary, measuring the magnetization, magnetic susceptibility, and longitudinal and transverse spin-spin correlations as a function of distance from the boundary.
49 - Hiroshi Watanabe 2017
We investigate the ergodicity and hot solvent/cold solute problems in molecular dynamics simulations. While the kinetic moments and the stimulated Nose--Hoover methods improve the ergodicity of a harmonic-oscillator system, both methods exhibit the hot solvent/cold solute problem in a binary liquid system. These results show that the devices to improve the ergodicity do not resolve the hot solvent/cold solute problem.
We discuss the use of a Langevin equation with a colored (correlated) noise to perform constant-temperature molecular dynamics simulations. Since the equations of motion are linear in nature, it is easy to predict the response of a Hamiltonian system to such a thermostat and to tune at will the relaxation time of modes of different frequency. This allows one to optimize the time needed to thermalize the system and generate independent configurations. We show how this frequency-dependent response can be exploited to control the temperature of Car-Parrinello-like dynamics, keeping at low temperature the electronic degrees of freedom, without affecting the adiabatic separation from the vibrations of the ions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا