Do you want to publish a course? Click here

A fiber-coupled diamond quantum nanophotonic interface

139   0   0.0 ( 0 )
 Added by Michael Burek
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Color centers in diamond provide a promising platform for quantum optics in the solid state, with coherent optical transitions and long-lived electron and nuclear spins. Building upon recent demonstrations of nanophotonic waveguides and optical cavities in single-crystal diamond, we now demonstrate on-chip diamond nanophotonics with a high efficiency fiber-optical interface, achieving > 90% power coupling at visible wavelengths. We use this approach to demonstrate a bright source of narrowband single photons, based on a silicon-vacancy color center embedded within a waveguide-coupled diamond photonic crystal cavity. Our fiber-coupled diamond quantum nanophotonic interface results in a high flux of coherent single photons into a single mode fiber, enabling new possibilities for realizing quantum networks that interface multiple emitters, both on-chip and separated by long distances.

rate research

Read More

We review recent advances towards the realization of quantum networks based on atom-like solid-state quantum emitters coupled to nanophotonic devices. Specifically, we focus on experiments involving the negatively charged silicon-vacancy color center in diamond. These emitters combine homogeneous, coherent optical transitions and a long-lived electronic spin quantum memory. We discuss optical and spin properties of this system at cryogenic temperatures and describe experiments where silicon-vacancy centers are coupled to nanophotonic devices. Finally, we discuss experiments demonstrating quantum nonlinearities at the single-photon level and two-emitter entanglement in a single nanophotonic device.
We demonstrate non-perturbative coupling between a single self-assembled InGaAs quantum dot and an external fiber-mirror based microcavity. Our results extend the previous realizations of tunable microcavities while ensuring spatial and spectral overlap between the cavity-mode and the emitter by simultaneously allowing for deterministic charge control of the quantum dots. Using resonant spectroscopy, we show that the coupled quantum dot cavity system is at the onset of strong coupling, with a cooperativity parameter of 2. Our results constitute a milestone towards the realization of a high efficiency solid-state spin-photon interface.
127 - Andreas Brenneis 2014
Nonradiative transfer processes are often regarded as loss channels for an optical emitter1, since they are inherently difficult to be experimentally accessed. Recently, it has been shown that emitters, such as fluorophores and nitrogen vacancy centers in diamond, can exhibit a strong nonradiative energy transfer to graphene. So far, the energy of the transferred electronic excitations has been considered to be lost within the electron bath of the graphene. Here, we demonstrate that the trans-ferred excitations can be read-out by detecting corresponding currents with picosecond time resolution. We electrically detect the spin of nitrogen vacancy centers in diamond electronically and con-trol the nonradiative transfer to graphene by electron spin resonance. Our results open the avenue for incorporating nitrogen vacancy centers as spin qubits into ultrafast electronic circuits and for harvesting non-radiative transfer processes electronically.
Quantum networks require functional nodes consisting of stationary registers with the capability of high-fidelity quantum processing and storage, which efficiently interface with photons propagating in an optical fiber. We report a significant step towards realization of such nodes using a diamond nanocavity with an embedded silicon-vacancy (SiV) color center and a proximal nuclear spin. Specifically, we show that efficient SiV-cavity coupling (with cooperativity $C >30$) provides a nearly-deterministic interface between photons and the electron spin memory, featuring coherence times exceeding one millisecond. Employing coherent microwave control, we demonstrate heralded single photon storage in the long-lived spin memory as well as a universal control over a cavity-coupled two-qubit register consisting of a SiV and a proximal $^{mathrm{13}}$C nuclear spin with nearly second-long coherence time, laying the groundwork for implementing quantum repeaters.
Scalable quantum technologies require faithful conversion between matter qubits storing the quantum information and photonic qubits carrying the information in integrated circuits and waveguides. We demonstrate that the electromagnetic field chirality which arises in nanophotonic waveguides leads to unidirectional emission from an embedded quantum dot quantum emitter, with resultant in-plane transfer of matter-qubit (spin) information. The chiral behavior occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We measure and compare the phenomena in single mode nanobeam and photonic crystal waveguides. The former is much more tolerant to dot position, exhibits experimental spin-path readout as high as 95 +/- 5% and has potential to serve as the basis of future spin-logic and network implementations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا