Do you want to publish a course? Click here

ALMA observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster

207   0   0.0 ( 0 )
 Added by Helen Russell
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report new ALMA observations of the CO(3-2) line emission from the $2.1pm0.3times10^{10}rmthinspace M_{odot}$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $500-800rmthinspace M_{odot}rm; yr^{-1}$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $10-20rm; kpc$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.



rate research

Read More

We present ALMA observations of the CO(1-0) and CO(3-2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS0745-191. The total molecular gas mass of 4.6 +/- 0.3 x 10^9 solar masses, assuming a Galactic X_{CO} factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament roughly 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within +/-100 km/s of the galaxys systemic velocity. Their FWHMs are less than 150 km/s, which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on <10^7 yr timescales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ.
Unresolved gas and dust observations show a surprising diversity in the amount of interstellar matter in early-type galaxies. Using ALMA observations we resolve the ISM in z$sim$0.05 early-type galaxies. From a large sample of early-type galaxies detected in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) we selected five of the dustiest cases, with dust masses M$_dsim$several$times10^7$M$_odot$, with the aim of mapping their submillimetre continuum and $^{12}$CO(2-1) line emission distributions. These observations reveal molecular gas disks. There is a lack of associated, extended continuum emission in these ALMA observations, most likely because it is resolved out or surface brightness limited, if the dust distribution is as extended as the CO gas. However, two galaxies have central continuum ALMA detections. An additional, slightly offset, continuum source is revealed in one case, which may have contributed to confusion in the Herschel fluxes. Serendipitous continuum detections further away in the ALMA field are found in another case. Large and massive rotating molecular gas disks are mapped in three of our targets, reaching a few$times10^{9}$M$_odot$. One of these shows evidence of kinematic deviations from a pure rotating disc. The fields of our two remaining targets contain only smaller, weak CO sources, slightly offset from the optical galaxy centres. These may be companion galaxies seen in ALMA observations, or background objects. These heterogeneous findings in a small sample of dusty early-type galaxies reveal the need for more such high spatial resolution studies, to understand statistically how dust and gas are related in early-type galaxies.
We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5 - 7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central AGN have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxys systemic velocity at the nucleus to -370 km/s, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, show that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic $X_{mathrm{CO}}$ factor, the total molecular gas mass is $3.2pm0.2times10^{9}$M$_{odot}$. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of two. Stimulated feedback, where the radio bubbles lift low entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.
85 - Mark Lacy 2017
We use ALMA to detect and image CO (1-0) emission from Minkowskis Object, a dwarf galaxy that is interacting with a radio jet from a nearby elliptical galaxy. These observations are the first to detect molecular gas in Minkowskis Object. We estimate the range in the mass of molecular gas in Minkowskis Object assuming two different values of the ratio of the molecular gas mass to the CO luminosity, $alpha_{rm CO}$. For the Milky Way value of $alpha_{rm CO}=4.6~M_{odot}{rm (K~km~s^{-1}~pc^2)^{-1}}$ we obtain a molecular gas mass of $M_{rm H_2} =3.0 times 10^7~M_{odot}$, 6% of the HI gas mass. We also use the prescription of Narayanan et al. (2012) to estimate an $alpha_{rm CO}=27~M_{odot}{rm (K~km~s^{-1}~pc^2)^{-1}}$, in which case we obtain $M_{rm H_2} =1.8 times 10^8~M_{odot}$, 36% of the HI mass. The observations are consistent with previous claims of star formation being induced in Minkowskis Object via the passage of the radio jet, and it therefore being a rare local example of positive feedback from an AGN. In particular, we find highly efficient star formation, with gas depletion timescales $sim 5times 10^7 - 3times 10^8$yr (for assumed values of $alpha_{rm CO}=4.6$ and $27~M_{odot}{rm (K~km~s^{-1}~pc^2)^{-1}}$, respectively) in the upstream regions of Minkowskis Object that were struck first by the jet, and less efficient star formation downstream. We discuss the implications of this observation for models of jet induced star formation and radio mode feedback in massive galaxies.
We present the results of CO interferometric observations of the southern elliptical galaxy NGC3557 with ALMA. We have detected both the CO(1-0) emission line and a relatively strong continuum at 3mm. The continuum shows a flat-spectrum central unresolved source (at our angular resolution of 0.7arcsec) and two jets, associated with the larger scale emission observed at lower frequencies. The molecular gas in NGC3557 appears to be concentrated within 250 pc of the center, and shows evidence of organized rotation along the same axis as the stellar component and the symmetry axis of the nuclear dust absorption reported in the literature. We obtained M$_{H_2}$=(9.0$pm$2.0)x10$^7$ M$_odot$ of molecular gas, which has an average CO(2-1) to CO(1-0) line ratio of 0.7, which is relatively high when compared with the values reported in the literature for bona-fide ellipticals observed with single-dish telescopes. NGC3557 shows further a high excitation peak (i.e., CO(2-1)/CO(1-0) ~ 1.1$pm$0.3 offset 0.7 arcsec from the center, which appears to be associated with a region of higher velocity dispersion that does not share the overall rotation pattern of the molecular gas, but aligned with the radio jet. The molecular gas disk in this object appears to be stable to local gravitational instabilities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا