Do you want to publish a course? Click here

ALMA observations of the interaction of a radio jet with molecular gas in Minkowskis Object

86   0   0.0 ( 0 )
 Added by Mark Lacy
 Publication date 2017
  fields Physics
and research's language is English
 Authors Mark Lacy




Ask ChatGPT about the research

We use ALMA to detect and image CO (1-0) emission from Minkowskis Object, a dwarf galaxy that is interacting with a radio jet from a nearby elliptical galaxy. These observations are the first to detect molecular gas in Minkowskis Object. We estimate the range in the mass of molecular gas in Minkowskis Object assuming two different values of the ratio of the molecular gas mass to the CO luminosity, $alpha_{rm CO}$. For the Milky Way value of $alpha_{rm CO}=4.6~M_{odot}{rm (K~km~s^{-1}~pc^2)^{-1}}$ we obtain a molecular gas mass of $M_{rm H_2} =3.0 times 10^7~M_{odot}$, 6% of the HI gas mass. We also use the prescription of Narayanan et al. (2012) to estimate an $alpha_{rm CO}=27~M_{odot}{rm (K~km~s^{-1}~pc^2)^{-1}}$, in which case we obtain $M_{rm H_2} =1.8 times 10^8~M_{odot}$, 36% of the HI mass. The observations are consistent with previous claims of star formation being induced in Minkowskis Object via the passage of the radio jet, and it therefore being a rare local example of positive feedback from an AGN. In particular, we find highly efficient star formation, with gas depletion timescales $sim 5times 10^7 - 3times 10^8$yr (for assumed values of $alpha_{rm CO}=4.6$ and $27~M_{odot}{rm (K~km~s^{-1}~pc^2)^{-1}}$, respectively) in the upstream regions of Minkowskis Object that were struck first by the jet, and less efficient star formation downstream. We discuss the implications of this observation for models of jet induced star formation and radio mode feedback in massive galaxies.

rate research

Read More

We present neutral hydrogen, ultraviolet, optical and near-infrared imaging, and optical spectroscopy, of Minkowskis Object (MO), a star forming peculiar galaxy near NGC 541. The observations strengthen evidence that star formation in MO was triggered by the radio jet from NGC 541. Key new results are the discovery of a 4.9E8 solar mass double HI cloud straddling the radio jet downstream from MO, where the jet changes direction and decollimates; strong detections of MO, also showing double structure, in UV and H-alpha; and numerous HII regions and associated clusters in MO. In UV, MO resembles the radio-aligned, rest-frame UV morphologies in many high redshift radio galaxies (HzRGs), also thought to be caused by jet-induced star formation. MOs stellar population is dominated by a 7.5 Myr-old, 1.9E7 solar mass instantaneous burst, with current star formation rate 0.52 solar masses per year (concentrated upstream from where the HI column density is high). This is unlike the jet-induced star formation in Centaurus A, where the jet interacts with pre-existing cold gas; in MO the HI may have cooled out of a warmer, clumpy intergalactic or interstellar medium as a result of jet interaction, followed by collapse of the cooling clouds and subsequent star formation (consistent with numerical simulations). Since the radio source that triggered star formation in MO is much less luminous, and therefore more common, than powerful HzRGs, and because the environment around MO is not particularly special in terms of abundant dense, cold gas, jet-induced star formation in the early universe might be even more prevalent than previously thought.
We report new ALMA observations of the CO(3-2) line emission from the $2.1pm0.3times10^{10}rmthinspace M_{odot}$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $500-800rmthinspace M_{odot}rm; yr^{-1}$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $10-20rm; kpc$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.
We present ALMA observations of the CO(1-0) and CO(3-2) line emission tracing filaments of cold molecular gas in the central galaxy of the cluster PKS0745-191. The total molecular gas mass of 4.6 +/- 0.3 x 10^9 solar masses, assuming a Galactic X_{CO} factor, is divided roughly equally between three filaments each extending radially 3-5 kpc from the galaxy centre. The emission peak is located in the SE filament roughly 1 arcsec (2 kpc) from the nucleus. The velocities of the molecular clouds in the filaments are low, lying within +/-100 km/s of the galaxys systemic velocity. Their FWHMs are less than 150 km/s, which is significantly below the stellar velocity dispersion. Although the molecular mass of each filament is comparable to a rich spiral galaxy, such low velocities show that the filaments are transient and the clouds would disperse on <10^7 yr timescales unless supported, likely by the indirect effect of magnetic fields. The velocity structure is inconsistent with a merger origin or gravitational free-fall of cooling gas in this massive central galaxy. If the molecular clouds originated in gas cooling even a few kpc from their current locations their velocities would exceed those observed. Instead, the projection of the N and SE filaments underneath X-ray cavities suggests they formed in the updraft behind bubbles buoyantly rising through the cluster atmosphere. Direct uplift of the dense gas by the radio bubbles appears to require an implausibly high coupling efficiency. The filaments are coincident with low temperature X-ray gas, bright optical line emission and dust lanes indicating that the molecular gas could have formed from lifted warmer gas that cooled in situ.
We investigate the molecular gas in, and star-formation properties of, the host galaxy (CGCG 137-068) of a mysterious transient, AT2018cow, at kpc and larger scales, using archival band-3 data from the Atacama Large Millimeter/submillimeter Array (ALMA). AT2018cow is the nearest Fast-Evolving Luminous Transient (FELT), and this is the very first study unveiling molecular-gas properties of FELTs. The achieved rms and beam size are 0.21 mJy beam$^{-1}$ at a velocity resolution of $40$ km s$^{-1}$ and $3.66times2.71$ ($1.1~{rm kpc} times 0.8~{rm kpc}$), respectively. CO($J$=1-0) emission is successfully detected. The total molecular gas mass inferred from the CO data is $(1.85pm0.04)times10^8$ M$_odot$ with the Milky Way CO-to-H$_2$ conversion factor. The H$_2$ column density at the AT2018cow site is estimated to be $8.6times10^{20}$ cm$^{-2}$. The ALMA data reveal that (1) CGCG 137-068 is a normal star-forming (SF) dwarf galaxy in terms of its molecular gas and star-formation properties and (2) AT2018cow is located between a CO peak and a blue star cluster. These properties suggest on-going star formation and favor the explosion of a massive star as the progenitor of AT2018cow. We also find that CGCG 137-068 has a solar or super-solar metallicity. If the metallicity of the other FELT hosts is not higher than average, then some property of SF dwarf galaxies other than metallicity may be related to FELTs.
We present the results of CO interferometric observations of the southern elliptical galaxy NGC3557 with ALMA. We have detected both the CO(1-0) emission line and a relatively strong continuum at 3mm. The continuum shows a flat-spectrum central unresolved source (at our angular resolution of 0.7arcsec) and two jets, associated with the larger scale emission observed at lower frequencies. The molecular gas in NGC3557 appears to be concentrated within 250 pc of the center, and shows evidence of organized rotation along the same axis as the stellar component and the symmetry axis of the nuclear dust absorption reported in the literature. We obtained M$_{H_2}$=(9.0$pm$2.0)x10$^7$ M$_odot$ of molecular gas, which has an average CO(2-1) to CO(1-0) line ratio of 0.7, which is relatively high when compared with the values reported in the literature for bona-fide ellipticals observed with single-dish telescopes. NGC3557 shows further a high excitation peak (i.e., CO(2-1)/CO(1-0) ~ 1.1$pm$0.3 offset 0.7 arcsec from the center, which appears to be associated with a region of higher velocity dispersion that does not share the overall rotation pattern of the molecular gas, but aligned with the radio jet. The molecular gas disk in this object appears to be stable to local gravitational instabilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا