Do you want to publish a course? Click here

Strongly coupled near-field radiative and conductive heat transfer between planar objects

133   0   0.0 ( 0 )
 Added by Riccardo Messina
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the interplay of conductive and radiative heat transfer (RHT) in planar geometries and predict that temperature gradients induced by radiation can play a significant role on the behavior of RHT with respect to gap sizes, depending largely on geometric and material parameters and not so crucially on operating temperatures. Our findings exploit rigorous calculations based on a closed-form expression for the heat flux between two plates separated by vacuum gaps $d$ and subject to arbitrary temperature profiles, along with an approximate but accurate analytical treatment of coupled conduction--radiation in this geometry. We find that these effects can be prominent in typical materials (e.g. silica and sapphire) at separations of tens of nanometers, and can play an even larger role in metal oxides, which exhibit moderate conductivities and enhanced radiative properties. Broadly speaking, these predictions suggest that the impact of RHT on thermal conduction, and vice versa, could manifest itself as a limit on the possible magnitude of RHT at the nanoscale, which asymptotes to a constant (the conductive transfer rate when the gap is closed) instead of diverging at short separations.



rate research

Read More

We present a general nonequilibrium Greens function formalism for modeling heat transfer in systems characterized by linear response that establishes the formal algebraic relationships between phonon and radiative conduction, and reveals how upper bounds for the former can also be applied to the latter. We also propose an extension of this formalism to treat systems susceptible to the interplay of conductive and radiative heat transfer, which becomes relevant in atomic systems and at nanometric and smaller separations where theoretical descriptions which treat each phenomenon separately may be insufficient. We illustrate the need for such coupled descriptions by providing predictions for a low-dimensional system of carbyne wires in which the total heat transfer can differ from the sum of its radiative and conductive contributions. Our framework has ramifications for understanding heat transfer between large bodies that may approach direct contact with each other or that may be coupled by atomic, molecular, or interfacial film junctions.
88 - Karthik Sasihithlu 2018
When two objects made of a material which supports surface modes are brought in close proximity to each other such that the vacuum gap between them is less than the thermal wavelength of radiation, then the coupling between the surface modes provides an important channel for the heat transfer to occur which is different from that mediated by long range propagating electromagnetic waves. Indeed, the heat transfer then exceeds Plancks blackbody limit by several orders of magnitude, and consequently has been used for several energy applications such as near-field thermophotovoltaic systems. This near-field radiative heat exchange has been traditionally and successfully described using fluctuational electrodynamics principles. Here, we describe an alternate coupled harmonic oscillator model approach which can be used to model the coupling between surface modes and hence the resultant near-field heat transfer. We apply this theory to estimate the near-field heat transfer for the configurations of two metallic nanoparticles and two planar metal surfaces and compare the result with predictions from fluctuational electrodynamics theory.
In this work, we study the near-field heat transfer between composite nanostructures. It is demonstrated that thermally excited surface plasmon polaritons, surface phonon polaritons, and hyperbolic phonon polaritons in such composite nanostructures significantly enhance the near-field heat transfer. To further analyze the underlying mechanisms, we calculate energy transmission coefficients and obtain the near-field dispersion relations. The dispersion relations of composite nanostructures are substantially different from those of isolated graphene, silicon carbide (SiC) films, and SiC nanowire arrays due to the strong coupling effects among surface polaritonic modes. We identify four pairs of strongly coupled polaritonic modes with considerable Rabi frequencies in graphene/SiC film composite structures that greatly broaden the spectral peak. We confirm that near-field strong coupling effects between surface plasmon polaritons and hyperbolic phonon polaritons in the in-plane Reststrahlen band are different from those in the out-of-plane Reststrahlen band due to the different types of hyperbolicity. In addition, we analyze the effective tunability of the near-field heat transfer of graphene/SiC nanowire arrays composite structures by adjusting the chemical potential of graphene, the height and volume filling factor of the SiC nanowire arrays. This work provides a method to manipulate the near-field heat transfer with the use of strongly coupled surface polaritonic modes.
189 - Lixin Ge , Ke Gong , Yuping Cang 2018
Near-field radiative heat transfer (NFRHT) is strongly related with many applications such as near-field imaging, thermos-photovoltaics and thermal circuit devices. The active control of NFRHT is of great interest since it provides a degree of tunability by external means. In this work, a magnetically tunable multi-band NFRHT is revealed in a system of two suspended graphene sheets at room temperature. It is found that the single-band spectra for B=0 split into multi-band spectra under an external magnetic field. Dual-band spectra can be realized for a modest magnetic field (e.g., B=4 T). One band is determined by intra-band transitions in the classical regime, which undergoes a blue shift as the chemical potential increases. Meanwhile, the other band is contributed by inter-Landau-level transitions in the quantum regime, which is robust against the change of chemical potentials. For a strong magnetic field (e.g., B=15 T), there is an additional band with the resonant peak appearing at near-zero frequency (microwave regime), stemming from the magneto-plasmon zero modes. The great enhancement of NFRHT at such low frequency has not been found in any previous systems yet. This work may pave a way for multi-band thermal information transfer based on atomically thin graphene sheets.
In this Rapid Communication, we theoretically demonstrate that near-field radiative heat transfer (NFRHT) can be modulated and enhanced by a new energy transmission mode of evanescent wave, i.e. the nonreciprocal surface plasmons polaritons (NSPPs). In addition to the well-known coupled surface plasmon polaritons (SPPs), applying a drift current on a graphene sheet leads to an extremely asymmetric photonic transmission model, which has never been noted in the noncontact heat exchanges at nanoscale before. The coupling of plasmons in the infrared bands dominates the NFRHT, associated with low loss (high loss and ultrahigh confinement) traveling along (against) the current. The dependence of NSPPs on the drift-current velocity as well as the vacuum gap is analyzed. It is found that the coupling of NSPPs at smaller and larger gap sizes exhibits different nonreciprocities. Finally, we also demonstrate that the prominent influence of the drift current on the radiative heat flux is found at a low chemical potential. These findings will open a new way to spectrally control NFRHT, which holds great potential for improving the performance of energy systems like near-field thermophotovoltaics and thermal modulator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا