No Arabic abstract
The standard approach to nuclear physics encodes phase shift information in an NN potential, then decodes that information in forming an effective interaction, appropriate to a low-momentum Hilbert space. Here we show that it is instead possible to construct the effective interaction directly from continuum phase shifts and mixing angles, eliminating all reference to a high momentum potential. The theory is rapidly convergent and well behaved, yielding sub-keV accuracy.
The traditional approach to nuclear physics encodes phase shift information in a nucleon-nucleon (NN) potential, producing a nucleon-level interaction that captures the sub-GeV consequences of QCD. A further reduction to the nuclear scale is needed to produce an effective interaction for soft Hilbert spaces, such as those employed in the shell model. Here we describe an alternative construction of this effective interaction, from QCD directly to the nuclear scale, that is direct and precise. This eliminates the need for constructing and renormalizing the high-momentum NN potential. Instead, continuum phase shifts and mixing angles are used directly at the nuclear scale. The method exploits the analytic continuity in energy of HOBET (Harmonic-Oscillator-Based Effective Theory) to connect bound states to continuum solutions at specific energies. The procedure is systematic, cutoff independent, and convergent, yielding keV accuracy at NNLO or N$^3$LO, depending on the channel. Lepage plots are provided.
An effective field theory is used to describe light nuclei, calculated from quantum chromodynamics on a lattice at unphysically large pion masses. The theory is calibrated at leading order to two available data sets on two- and three-body nuclei for two pion masses. At those pion masses we predict the quartet and doublet neutron-deuteron scattering lengths, and the alpha-particle binding energy. For $m_pi=510~$MeV we obtain, respectively, $^4a_{rm nD}=2.3pm 1.3~$fm, $^2a_{rm nD}=2.2pm 2.1~$fm, and $B_{alpha}^{}=35pm 22~$MeV, while for $m_pi=805~$MeV $^4a_{rm nD}=1.6pm 1.3~$fm, $^2a_{rm nD}=0.62pm 1.0~$fm, and $B_{alpha}^{}=94pm 45~$MeV are found. Phillips- and Tjon-like correlations to the triton binding energy are established. Higher-order effects on the respective correlation bands are found insensitive to the pion mass. As a benchmark, we present results for the physical pion mass, using experimental two-body scattering lengths and the triton binding energy as input. Hints of subtle changes in the structure of the triton and alpha particle are discussed.
We present a systematic study of neutron-proton scattering in Nuclear Lattice Effective Field Theory (NLEFT), in terms of the computationally efficient radial Hamiltonian method. Our leading-order (LO) interaction consists of smeared, local contact terms and static one-pion exchange. We show results for a fully non-perturbative analysis up to next-to-next-to-leading order (NNLO), followed by a perturbative treatment of contributions beyond LO. The latter analysis anticipates practical Monte Carlo simulations of heavier nuclei. We explore how our results depend on the lattice spacing a, and estimate sources of uncertainty in the determination of the low-energy constants of the next-to-leading-order (NLO) two-nucleon force. We give results for lattice spacings ranging from a = 1.97 fm down to a = 0.98 fm, and discuss the effects of lattice artifacts on the scattering observables. At a = 0.98 fm, lattice artifacts appear small, and our NNLO results agree well with the Nijmegen partial-wave analysis for S-wave and P-wave channels. We expect the peripheral partial waves to be equally well described once the lattice momenta in the pion-nucleon coupling are taken to coincide with the continuum dispersion relation, and higher-order (N3LO) contributions are included. We stress that for center-of-mass momenta below 100 MeV, the physics of the two-nucleon system is independent of the lattice spacing.
We explore the lattice spacing dependence in Nuclear Lattice Effective Field Theory for few-body systems up to next-to-next-to leading order in chiral effective field theory including all isospin breaking and electromagnetic effects, the complete two-pion-exchange potential and the three-nucleon forces. We calculate phase shifts in the neutron-proton system and proton-proton systems as well as the scattering length in the neutron-neutron system. We then perform a full next-to-next-to-leading order calculation with two-nucleon and three-nucleon forces for the triton and helium-4 and analyse their binding energy correlation. We show how the Tjon band is reached by decreasing the lattice spacing and confirm the continuum observation that a four-body force is not necessary to describe light nuclei.
We investigate Nuclear Lattice Effective Field Theory for the two-body system for several lattice spacings at lowest order in the pionless as well as in the pionful theory. We discuss issues of regularizations and predictions for the effective range expansion. In the pionless case, a simple Gaussian smearing allows to demonstrate lattice spacing independence over a wide range of lattice spacings. We show that regularization methods known from the continuum formulation are necessary as well as feasible for the pionful approach.