We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum, and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.
This book introduces the theoretical description and properties of quantum fluids. The focus is on gaseous atomic Bose-Einstein condensates and, to a minor extent, superfluid helium, but the underlying concepts are relevant to other forms of quantum fluids such as polariton and photonic condensates. The book is pitched at the level of advanced undergraduates and early postgraduate students, aiming to provide the reader with the knowledge and skills to develop their own research project on quantum fluids. Indeed, the content for this book grew from introductory notes provided to our own research students. It is assumed that the reader has prior knowledge of undergraduate mathematics and/or physics; otherwise, the concepts are introduced from scratch, often with references for directed further reading.
Particles of low velocity, travelling without dissipation in a superfluid, can interact and emit sound when they collide. We propose a minimal model in which the equations of motion of the particles, including a short-range repulsive force, are self-consistently coupled with the Gross-Pitaevskii equation. We use this model to demonstrate the existence of an effective superfluid-mediated attractive interaction between the particles; and we study numerically the collisional dynamics of particles as a function of their incident kinetic energy and the length-scale of the repulsive force. We find a transition from almost elastic to completely inelastic (sticking) collisions as the parameters are tuned. We find that aggregation and clustering result from this sticking transition in multi-particle systems.
We theoretically study the instability of helical shear flows, in which one fluid component flows along the vortex core of the other, in phase-separated two-component Bose-Einstein condensates at zero temperature. The helical shear flows are hydrodynamically classified into two regimes: (1) a helical vortex sheet, where the vorticity is localized on the cylindrical interface and the stability is described by an effective theory for ripple modes, and (2) a core-flow vortex with the vorticity distributed in the vicinity of the vortex core, where the instability phenomena are dominated only by the vortex-characteristic modes: Kelvin and varicose modes. The helical shear-flow instability shows remarkable competition among different types of instabilities in the crossover regime between the two regimes.
Systems with competing attractive and repulsive interactions have a tendency to condense into droplets. This is the case for water in a sink, liquid helium and dipolar atomic gases. Here, we consider a photon fluid which is formed in the transverse plane of a monochromatic laser beam propagating in an attractive (focusing) nonlocal nonlinear medium. In this setting we demonstrate the formation of the optical analogue of matter wave droplets, and study their properties. The system we consider admits droplets that carry orbital angular momentum. We find bound states possessing liquid-like properties, such as bulk pressure and compressibility. Interestingly, these droplets of light, as opposed to optical vortices, form due to the competition between long-range s-wave (monopole) and d-wave (quadrupole) interactions as well as diffraction.
Soliton hydrodynamics is an appealing tool to describe strong turbulence in low-dimensional systems. Strong turbulence in quasi-one dimensional spuerfluids, such as Bose-Einstein condensates, involves the dynamics of dark solitons and, therefore, the description of a statistical ensemble of dark-solitons, i.e. soliton gases, is necessary. In this work, we propose a phase-space (kinetic) description of dark-soliton gases, introducing a kinetic equation that is formally similar to the Vlasov equation in plasma physics. We show that the proposed kinetic theory can capture the dynamical features of soliton gases and show that it sustains an acoustic mode, a fact that we corroborate with the help of direct numerical simulations. Our findings motivate the investigation of the microscopic structure of out-of-equilibrium and turbulent regimes in low-dimensional superfluids.