We propose a novel approach to the analysis of covariance operators making use of concentration inequalities. First, non-asymptotic confidence sets are constructed for such operators. Then, subsequent applications including a k sample test for equality of covariance, a functional data classifier, and an expectation-maximization style clustering algorithm are derived and tested on both simulated and phoneme data.
The assumption of separability of the covariance operator for a random image or hypersurface can be of substantial use in applications, especially in situations where the accurate estimation of the full covariance structure is unfeasible, either for computational reasons, or due to a small sample size. However, inferential tools to verify this assumption are somewhat lacking in high-dimensional or functional {data analysis} settings, where this assumption is most relevant. We propose here to test separability by focusing on $K$-dimensional projections of the difference between the covariance operator and a nonparametric separable approximation. The subspace we project onto is one generated by the eigenfunctions of the covariance operator estimated under the separability hypothesis, negating the need to ever estimate the full non-separable covariance. We show that the rescaled difference of the sample covariance operator with its separable approximation is asymptotically Gaussian. As a by-product of this result, we derive asymptotically pivotal tests under Gaussian assumptions, and propose bootstrap methods for approximating the distribution of the test statistics. We probe the finite sample performance through simulations studies, and present an application to log-spectrogram images from a phonetic linguistics dataset.
Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization by V. Koltchinskii [arXiv:0708.0083]
Distribution function is essential in statistical inference, and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradigm for statistical inference. However, existing distribution functions are defined in Euclidean spaces and no longer convenient to use in rapidly evolving data objects of complex nature. It is imperative to develop the concept of distribution function in a more general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the distribution function in a Euclidean space, but without the linearity in a metric space, we must work with the metric to investigate the probability measure. We introduce a class of metric distribution functions through the metric between random objects and a fixed location in metric spaces. We overcome this challenging step by proving the correspondence theorem and the Glivenko-Cantelli theorem for metric distribution functions in metric spaces that lie the foundation for conducting rational statistical inference for metric space-valued data. Then, we develop homogeneity test and mutual independence test for non-Euclidean random objects, and present comprehensive empirical evidence to support the performance of our proposed methods.
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide conditions under which it is enough to have a consistent univariate test of independence on the distances to guarantee that the power to detect dependence between the random vectors increases to one, as the sample size increases. These conditions turn out to be minimal. If the univariate test is distribution-free, the multivariate test will also be distribution-free. If we consider multiple center points and aggregate the center-specific univariate tests, the power may be further improved, and the resulting multivariate test may be distribution-free for specific aggregation methods (if the univariate test is distribution-free). We show that several multivariate tests recently proposed in the literature can be viewed as instances of this general approach.
Two-sample testing is a fundamental problem in statistics. Despite its long history, there has been renewed interest in this problem with the advent of high-dimensional and complex data. Specifically, in the machine learning literature, there have been recent methodological developments such as classification accuracy tests. The goal of this work is to present a regression approach to comparing multivariate distributions of complex data. Depending on the chosen regression model, our framework can efficiently handle different types of variables and various structures in the data, with competitive power under many practical scenarios. Whereas previous work has been largely limited to global tests which conceal much of the local information, our approach naturally leads to a local two-sample testing framework in which we identify local differences between multivariate distributions with statistical confidence. We demonstrate the efficacy of our approach both theoretically and empirically, under some well-known parametric and nonparametric regression methods. Our proposed methods are applied to simulated data as well as a challenging astronomy data set to assess their practical usefulness.
Adam B. Kashlak
,John A. D. Aston
,Richard Nickl
.
(2016)
.
"Inference on covariance operators via concentration inequalities: k-sample tests, classification, and clustering via Rademacher complexities"
.
Adam Kashlak
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا