Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization by V. Koltchinskii [arXiv:0708.0083]
We propose a novel approach to the analysis of covariance operators making use of concentration inequalities. First, non-asymptotic confidence sets are constructed for such operators. Then, subsequent applications including a k sample test for equality of covariance, a functional data classifier, and an expectation-maximization style clustering algorithm are derived and tested on both simulated and phoneme data.
We propose a method to assess the intrinsic risk carried by a financial position $X$ when the agent faces uncertainty about the pricing rule assigning its present value. Our approach is inspired by a new interpretation of the quasiconvex duality in a Knightian setting, where a family of probability measures replaces the single reference probability and is then applied to value financial positions. Diametrically, our construction of Value&Risk measures is based on the selection of a basket of claims to test the reliability of models. We compare a random payoff $X$ with a given class of derivatives written on $X$ , and use these derivatives to textquotedblleft testtextquotedblright the pricing measures. We further introduce and study a general class of Value&Risk measures $% R(p,X,mathbb{P})$ that describes the additional capital that is required to make $X$ acceptable under a probability $mathbb{P}$ and given the initial price $p$ paid to acquire $X$.
Systemic risk arises as a multi-layer network phenomenon. Layers represent direct financial exposures of various types, including interbank liabilities, derivative- or foreign exchange exposures. Another network layer of systemic risk emerges through common asset holdings of financial institutions. Strongly overlapping portfolios lead to similar exposures that are caused by price movements of the underlying financial assets. Based on the knowledge of portfolio holdings of financial agents we quantify systemic risk of overlapping portfolios. We present an optimization procedure, where we minimize the systemic risk in a given financial market by optimally rearranging overlapping portfolio networks, under the constraints that the expected returns and risks of the individual portfolios are unchanged. We explicitly demonstrate the power of the method on the overlapping portfolio network of sovereign exposure between major European banks by using data from the European Banking Authority stress test of 2016. We show that systemic-risk-efficient allocations are accessible by the optimization. In the case of sovereign exposure, systemic risk can be reduced by more than a factor of two, with- out any detrimental effects for the individual banks. These results are confirmed by a simple simulation of fire sales in the government bond market. In particular we show that the contagion probability is reduced dramatically in the optimized network.
We propose a robust risk measurement approach that minimizes the expectation of overestimation plus underestimation costs. We consider uncertainty by taking the supremum over a collection of probability measures, relating our approach to dual sets in the representation of coherent risk measures. We provide results that guarantee the existence of a solution and explore the properties of minimizer and minimum as risk and deviation measures, respectively. An empirical illustration is carried out to demonstrate the use of our approach in capital determination.
We obtain explicit representations of locally risk-minimizing strategies of call and put options for the Barndorff-Nielsen and Shephard models, which are Ornstein--Uhlenbeck-type stochastic volatility models. Using Malliavin calculus for Levy processes, Arai and Suzuki (2015) obtained a formula for locally risk-minimizing strategies for Levy markets under many additional conditions. Supposing mild conditions, we make sure that the Barndorff-Nielsen and Shephard models satisfy all the conditions imposed in Arai and Suzuki (2015). Among others, we investigate the Malliavin differentiability of the density of the minimal martingale measure. Moreover, some numerical experiments for locally risk-minimizing strategies are introduced.
Stephan Clemenc{c}on
,Gabor Lugosi
,Nicolas Vayatis
.
(2007)
.
"Discussion of ``2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization by V. Koltchinskii"
.
Nicolas Vayatis
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا