Do you want to publish a course? Click here

High voltage testing for the MAJORANA Demonstrator

112   0   0.0 ( 0 )
 Added by Clara Cuesta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The MAJORANA Collaboration is constructing the MAJORANA Demonstrator, an ultra-low background, 44-kg modular high-purity Ge (HPGe) detector array to search for neutrinoless double-beta decay in Ge-76. The phenomenon of surface micro-discharge induced by high-voltage has been studied in the context of the MAJORANA Demonstrator. This effect can damage the front-end electronics or mimic detector signals. To ensure the correct performance, every high-voltage cable and feedthrough must be capable of supplying HPGe detector operating voltages as high as 5 kV without exhibiting discharge. R&D measurements were carried out to understand the testing system and determine the optimum design configuration of the high-voltage path, including different improvements of the cable layout and feedthrough flange model selection. Every cable and feedthrough to be used at the MAJORANA Demonstrator was characterized and the micro-discharge effects during the MAJORANA Demonstrator commissioning phase were studied. A stable configuration has been achieved, and the cables and connectors can supply HPGe detector operating voltages without exhibiting discharge.

rate research

Read More

The MAJORANA collaboration is constructing the MAJORANA DEMONSTATOR at the Sanford Underground Research Facility at the Homestake gold mine, in Lead, SD. The apparatus will use Ge detectors, enriched in isotope uc{76}{Ge}, to demonstrate the feasibility of a large-scale Ge detector experiment to search for neutrinoless double beta decay. The long half-life of this postulated process requires that the apparatus be extremely low in radioactive isotopes whose decays may produce backgrounds to the search. The radioassay program conducted by the collaboration to ensure that the materials comprising the apparatus are sufficiently pure is described. The resulting measurements of the radioactive-isotope contamination for a number of materials studied for use in the detector are reported.
The MAJORANA DEMONSTRATOR is searching for neutrinoless double-beta decay in 76Ge using arrays of point-contact germanium detectors operating at the Sanford Underground Research Facility. Background results in the neutrinoless double-beta decay region of interest from data taken during construction, commissioning, and the start of full operations have been recently published. A pulse shape analysis cut applied to achieve this result, named AvsE, is described in this paper. This cut is developed to remove events whose waveforms are typical of multi-site energy deposits while retaining (90 +/- 3.5)% of single-site events. This pulse shape discrimination is based on the relationship between the maximum current and energy, and tuned using 228Th calibration source data. The efficiency uncertainty accounts for variation across detectors, energy, and time, as well as for the position distribution difference between calibration and $0 ubetabeta$ events, established using simulations.
164 - W. Xu , N. Abgrall , E. Aguayo 2014
High purity germanium (HPGe) crystals will be used for the MAJORANA DEMONSTRATOR, where they serve as both the source and the detector for neutrinoless double beta decay. It is crucial for the experiment to understand the performance of the HPGe crystals. A variety of crystal properties are being investigated, including basic properties such as energy resolution, efficiency, uniformity, capacitance, leakage current and crystal axis orientation, as well as more sophisticated properties, e.g. pulse shapes and dead layer and transition layer distributions. In this paper, we will present our measurements that characterize the HPGe crystals. We will also discuss our simulation package for the detector characterization setup, and show that additional information can be extracted from data-simulation comparisons.
The {sc Majorana} collaboration is searching for neutrinoless double beta decay using $^{76}$Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would show that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, $15 - 50$ meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of $sim$1 count/t-y or lower in the region of the signal. The {sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which $sim$30 kg will be enriched to 87% in $^{76}$Ge. The {sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850 level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.
112 - C. Cuesta , N. Abgrall , E. Aguayo 2014
The Majorana Collaboration is constructing a system containing 40 kg of HPGe detectors to demonstrate the feasibility and potential of a future tonne-scale experiment capable of probing the neutrino mass scale in the inverted-hierarchy region. To realize this, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest around the Q-value at 2039 keV. This goal is pursued through a combination of a significant reduction of radioactive impurities in construction materials with analytical methods for background rejection, for example using powerful pulse shape analysis techniques profiting from the p-type point contact HPGe detectors technology. The effectiveness of these methods is assessed using simulations of the different background components whose purity levels are constrained from radioassay measurements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا