Do you want to publish a course? Click here

Identification of simple reaction coordinates from complex dynamics

310   0   0.0 ( 0 )
 Added by Robert McGibbon
 Publication date 2016
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

Reaction coordinates are widely used throughout chemical physics to model and understand complex chemical transformations. We introduce a definition of the natural reaction coordinate, suitable for condensed phase and biomolecular systems, as a maximally predictive one-dimensional projection. We then show this criterion is uniquely satisfied by a dominant eigenfunction of an integral operator associated with the ensemble dynamics. We present a new sparse estimator for these eigenfunctions which can search through a large candidate pool of structural order parameters and build simple, interpretable approximations that employ only a small number of these order parameters. Example applications with a small molecules rotational dynamics and simulations of protein conformational change and folding show that this approach can filter through statistical noise to identify simple reaction coordinates from complex dynamics.

rate research

Read More

The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.
100 - Gabin Laurent 2021
Homochirality, i.e. the dominance across all living matter of one enantiomer over the other among chiral molecules, is thought to be a key step in the emergence of life. Building on ideas put forward by Frank and many others, we proposed recently one such mechanism in G. Laurent et al., PNAS (2021) based on the properties of large out of equilibrium chemical networks. We showed that in such networks, a phase transition towards an homochiral state is likely to occur as the number of chiral species in the system becomes large or as the amount of free energy injected into the system increases. This paper aims at clarifying some important points in that scenario, not covered by our previous work. We first analyze the various conventions used to measure chirality, introduce the notion of chiral symmetry of a network, and study its implications regarding the relative chiral signs adopted by different groups of molecules. We then propose a generalization of Franks model for large chemical networks, which we characterize completely using methods of random matrices. This analysis can be extended to sparse networks, which shows that the emergence of homochirality is a robust transition.
In genetic circuits, when the mRNA lifetime is short compared to the cell cycle, proteins are produced in geometrically-distributed bursts, which greatly affects the cellular switching dynamics between different metastable phenotypic states. Motivated by this scenario, we study a general problem of switching or escape in stochastic populations, where influx of particles occurs in groups or bursts, sampled from an arbitrary distribution. The fact that the step size of the influx reaction is a-priori unknown, and in general, may fluctuate in time with a given correlation time and statistics, introduces an additional non-demographic step-size noise into the system. Employing the probability generating function technique in conjunction with Hamiltonian formulation, we are able to map the problem in the leading order onto solving a stationary Hamilton-Jacobi equation. We show that bursty influx exponentially decreases the mean escape time compared to the usual case of single-step influx. In particular, close to bifurcation we find a simple analytical expression for the mean escape time, which solely depends on the mean and variance of the burst-size distribution. Our results are demonstrated on several realistic distributions and compare well with numerical Monte-Carlo simulations.
While seemingly straightforward in principle, the reliable estimation of rate constants is seldom easy in practice. Numerous issues, such as the complication of poor reaction coordinates, cause obvious approaches to yield unreliable estimates. When a reliable order parameter is available, the reactive flux theory of Chandler allows the rate constant to be extracted from the plateau region of an appropriate reactive flux function. However, when applied to real data from single-molecule experiments or molecular dynamics simulations, the rate can sometimes be difficult to extract due to the numerical differentiation of a noisy empirical correlation function or difficulty in locating the plateau region at low sampling frequencies. We present a modified version of this theory which does not require numerical derivatives, allowing rate constants to be robustly estimated from the time-correlation function directly. We compare these approaches using single-molecule force spectroscopy measurements of an RNA hairpin.
How to produce expressive molecular representations is a fundamental challenge in AI-driven drug discovery. Graph neural network (GNN) has emerged as a powerful technique for modeling molecular data. However, previous supervised approaches usually suffer from the scarcity of labeled data and have poor generalization capability. Here, we proposed a novel Molecular Pre-training Graph-based deep learning framework, named MPG, that leans molecular representations from large-scale unlabeled molecules. In MPG, we proposed a powerful MolGNet model and an effective self-supervised strategy for pre-training the model at both the node and graph-level. After pre-training on 11 million unlabeled molecules, we revealed that MolGNet can capture valuable chemistry insights to produce interpretable representation. The pre-trained MolGNet can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of drug discovery tasks, including molecular properties prediction, drug-drug interaction, and drug-target interaction, involving 13 benchmark datasets. Our work demonstrates that MPG is promising to become a novel approach in the drug discovery pipeline.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا