No Arabic abstract
The cell cytoskeleton is a striking example of active medium driven out-of-equilibrium by ATP hydrolysis. Such activity has been shown recently to have a spectacular impact on the mechanical and rheological properties of the cellular medium, as well as on its transport properties : a generic tracer particle freely diffuses as in a standard equilibrium medium, but also intermittently binds with random interaction times to motor proteins, which perform active ballistic excursions along cytoskeletal filaments. Here, we propose for the first time an analytical model of transport limited reactions in active media, and show quantitatively how active transport can enhance reactivity for large enough tracers like vesicles. We derive analytically the average interaction time with motor proteins which optimizes the reaction rate, and reveal remarkable universal features of the optimal configuration. We discuss why active transport may be beneficial in various biological examples: cell cytoskeleton, membranes and lamellipodia, and tubular structures like axons.
Reaction coordinates are widely used throughout chemical physics to model and understand complex chemical transformations. We introduce a definition of the natural reaction coordinate, suitable for condensed phase and biomolecular systems, as a maximally predictive one-dimensional projection. We then show this criterion is uniquely satisfied by a dominant eigenfunction of an integral operator associated with the ensemble dynamics. We present a new sparse estimator for these eigenfunctions which can search through a large candidate pool of structural order parameters and build simple, interpretable approximations that employ only a small number of these order parameters. Example applications with a small molecules rotational dynamics and simulations of protein conformational change and folding show that this approach can filter through statistical noise to identify simple reaction coordinates from complex dynamics.
Adherent cells exert traction forces on to their environment, which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures. This traction can be measured in a perturbation-free manner with traction force microscopy (TFM). In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, standard TFM algorithms either employ data filtering or regularization. However, these approaches require a manual selection of filter- or regularization parameters and consequently exhibit a substantial degree of subjectiveness. This shortcoming is particularly serious when cells in different conditions are to be compared because optimal noise suppression needs to be adapted for every situation, which invariably results in systematic errors. Here, we systematically test the performance of new methods from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare two classical schemes, L1- and L2-regularization, with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. Using artificial data and experimental data, we show that these methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular traction forces.
Reaction-diffusion models have been used over decades to study biological systems. In this context, evolution equations for probability distribution functions and the associated stochastic differential equations have nowadays become indispensable tools. In population dynamics, say, such approaches are utilized to study many systems, e.g., colonies of microorganisms or ecological systems. While the majority of studies focus on the case of a static domain, the time-dependent case is also important, as it allows one to deal with situations where the domain growth takes place over time scales that are relevant for the computation of reaction rates and of the associated reactant distributions. Such situations are indeed frequently encountered in the field of developmental biology, notably in connection with pattern formation, embryo growth or morphogen gradient formation. In this chapter, we review some recent advances in the study of pure diffusion processes in growing domains. These results are subsequently taken as a starting point to study the kinetics of a simple reaction-diffusion process, i.e., the encounter-controlled annihilation reaction. The outcome of the present work is expected to pave the way for the study of more complex reaction-diffusion systems of possible relevance in various fields of research.
Even in the steady-state, the number of biomolecules in living cells fluctuates dynamically; and the frequency spectrum of this chemical fluctuation carries valuable information about the mechanism and the dynamics of the intracellular reactions creating these biomolecules. Although recent advances in single-cell experimental techniques enable the direct monitoring of the time-traces of the biological noise in each cell, the development of the theoretical tools needed to extract the information encoded in the stochastic dynamics of intracellular chemical fluctuation is still in its adolescence. Here, we present a simple and general equation that relates the power-spectrum of the product number fluctuation to the product lifetime and the reaction dynamics of the product creation process. By analyzing the time traces of the protein copy number using this theory, we can extract the power spectrum of the mRNA number, which cannot be directly measured by currently available experimental techniques. From the power spectrum of the mRNA number, we can further extract quantitative information about the transcriptional regulation dynamics. Our power spectrum analysis of gene expression noise is demonstrated for the gene network model of luciferase expression under the control of the Bmal 1a promoter in mouse fibroblast cells. Additionally, we investigate how the non-Poisson reaction dynamics and the cell-to-cell heterogeneity in transcription and translation affect the power-spectra of the mRNA and protein number.
The study and applications of ferroelectric materials in the biomedical and biotechnological fields is a novel and very promising scientific area that spans roughly one decade. However, some groups have already provided experimental proof of very interesting biological modulation when living systems are exposed to different ferroelectrics and excitation mechanisms. These materials should offer several advantages in the field of bioelectricity, such as no need of an external electric power source or circuits, scalable size of the electroactive regions, flexible and reconfigurable virtual electrodes, or fully proved biocompatibility. In this focused review we provide the underlying physics of ferroelectric activity and a recount of the research reports already published, along with some tentative biophysical mechanisms that can explain the observed results. More specifically, we focused on the biological actions of domain ferroelectrics, and ferroelectrics excited by the bulk photovoltaic effect or the pyroelectric effect. It is our goal to provide a comprehensive account of the published material so far, and to set the stage for a vigorous expansion of the field, with envisioned applications that span from cell biology and signaling to cell and tissue regeneration, antitumoral action, or cell bioengineering to name a few.