Do you want to publish a course? Click here

A possible Chandra and Hubble Space Telescope detection of extragalactic WHIM towards PG 1116+215

232   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

(Abridged) We have analyzed Chandra LETG and XMM-Newton RGS spectra towards the z=0.177 quasar PG 1116+215, a sightline that is rendered particularly interesting by the HST detection of several OVI and HI broad Lyman-alpha absorption lines that may be associated with the warm-hot intergalactic medium. We performed a search for resonance K-alpha absorption lines from OVII and OVIII at the redshifts of the detected far-ultraviolet lines. We detected an absorption line in the Chandra spectra at 5.2 sigma confidence level at wavelengths corresponding to OVIII K-alpha at z=0.0911+-0.0004+-0.0005 (statistical followed by systematic error). This redshift is within 3 sigma of that of a HI broad Lyman-alpha of b=130 km/s at z=0.09279+-0.00005. We have also analyzed the available XMM-Newton RGS data towards PG 1116+215. Unfortunately, the XMM-Newton data are not suitable to investigate this line because of instrumental features at the wavelengths of interest. At the same redshift, the Chandra and XMM-Newton spectra have OVII K-alpha absorption line features of significance 1.5 sigma and 1.8 sigma, respectively. We also analyzed the available SDSS spectroscopic galaxy survey data towards PG 1116+215 in the redshift range of interest. We found evidence for a galaxy filament that intersects the PG 1116+215 sightline and additional galaxy structures that may host WHIM. The combination of HST, Chandra, XMM-Newton and SDSS data indicates that we have likely detected a multi-temperature WHIM at z=0.091-0.093 towards PG 1116+215.



rate research

Read More

By observing the near-infrared spectrum of the quasar PG 1116+215 at z = 0.176 and combining with the HST/FOS spectrum, we obtained the relative strengths of three permitted OI lines ({lambda}1304, {lambda}8446, and {lambda}11287) in a quasar for the first time. The photon flux ratios of the OI lines of the quasar were compared with those previously measured in a Seyfert 1 and six narrow-line Seyfert 1s. No significant differences were found in the OI line flux ratios between the quasar and the other Seyferts, suggesting that the gas density in the OI and FeII line-emitting regions in the quasar is of the same order as those in low-luminosity AGNs. It was also found that the line width of OI {lambda}11287 is significantly narrower than that of Ly{alpha}, which is consistent with OI and FeII emission occurring in the partly ionized regions at the outermost portion of the broad-line region where velocities are small.
The upcoming launch of the James Webb Space Telescope (JWST) in less than three years is certain to bring a revolution in our understanding of many area of astrophysics, with one of the key goals being galaxy evolution. As the first proposals will be due in a little over two years, the time is ripe to take a holistic look at the science goals which the community would wish to accomplish with this observatory. Contrary to our experiences with the Hubble Space Telescope, which has now operated successfully for over two decades due to several timely servicing missions, the lifetime of JWST is finite and relatively short, with a lifetime requirement of five years, and a ten-year goal. Following the discussion session at the Exploring the Universe with JWST conference at ESA-ESTEC in October 2015, we highlight in this document the (non-local) extragalactic science goals for JWST. We describe how a concerted community effort could best address these, ensuring that the desired survey can be completed during the JWST mission.
148 - D. Calzetti 2014
The Legacy ExtraGalactic UV Survey (LEGUS) is a Cycle 21 Treasury program on the Hubble Space Telescope, aimed at the investigation of star formation and its relation with galactic environment in nearby galaxies, from the scales of individual stars to those of ~kpc-size clustered structures. Five-band imaging, from the near-ultraviolet to the I-band, with the Wide Field Camera 3, plus parallel optical imaging with the Advanced Camera for Surveys, is being collected for selected pointings of 50 galaxies within the local 12 Mpc. The filters used for the observations with the Wide Field Camera 3 are: F275W(2,704 A), F336W(3,355 A), F438W(4,325 A), F555W(5,308 A), and F814W(8,024 A); the parallel observations with the Advanced Camera for Surveys use the filters: F435W(4,328 A), F606W(5,921 A), and F814W(8,057 A). The multi-band images are yielding accurate recent (<~50 Myr) star formation histories from resolved massive stars and the extinction-corrected ages and masses of star clusters and associations. The extensive inventories of massive stars and clustered systems will be used to investigate the spatial and temporal evolution of star formation within galaxies. This will, in turn, inform theories of galaxy evolution and improve the understanding of the physical underpinning of the gas-star formation relation and the nature of star formation at high redshift. This paper describes the survey, its goals and observational strategy, and the initial science results. Because LEGUS will provide a reference survey and a foundation for future observations with JWST and with ALMA, a large number of data products are planned for delivery to the community.
We present a survey for optically thick Lyman limit absorbers at z<2.6 using archival Hubble Space Telescope observations with the Faint Object Spectrograph and Space Telescope Imaging Spectrograph. We identify 206 Lyman limit systems (LLSs) increasing the number of catalogued LLSs at z<2.6 by a factor of ~10. We compile a statistical sample of 50 tau_LLS > 2 LLSs drawn from 249 QSO sight lines that avoid known targeting biases. The incidence of such LLSs per unit redshift, l(z)=dn/dz, at these redshifts is well described by a single power law, l(z) = C1 (1+z)^gamma, with gamma=1.33 +/- 0.61 at z<2.6, or with gamma=1.83 +/- 0.21 over the redshift range 0.2 < z < 4.9. The incidence of LLSs per absorption distance, l(X), decreases by a factor of ~1.5 over the ~0.6 Gyr from z=4.9 to 3.5; l(X) evolves much more slowly at low redshifts, decreasing by a similar factor over the ~8 Gyr from z=2.6 to 0.25. We show that the column density distribution function, f(N(HI)), at low redshift is not well fitted by a single power law index (f(N(HI)) = C2 N(HI)^(-beta)) over the column density range 13 < log N(HI) < 22 or log N(HI) >17.2. While low and high redshift f(N(HI)) distributions are consistent for log N(HI)>19.0, there is some evidence that f(N(HI)) evolves with z for log N(HI) < 17.7, possibly due to the evolution of the UV background and galactic feedback. Assuming LLSs are associated with individual galaxies, we show that the physical cross section of the optically thick envelopes of galaxies decreased by a factor of ~9 from z~5 to 2 and has remained relatively constant since that time. We argue that a significant fraction of the observed population of LLSs arises in the circumgalactic gas of sub-L* galaxies.
543 - Debopam Som 2015
We report observations of four sub-damped Lyman-alpha (sub-DLA) quasar absorbers at z<0.5 obtained with the Hubble Space Telescope Cosmic Origins Spectrograph. We measure the available neutrals or ions of C, N, O, Si, P, S, Ar, Mn, Fe, and/or Ni. Our data have doubled the sub-DLA metallicity samples at z<0.5 and improved constraints on sub-DLA chemical evolution. All four of our sub-DLAs are consistent with near-solar or super-solar metallicities and relatively modest ionization corrections; observations of more lines and detailed modeling will help to verify this. Combining our data with measurements from the literature, we confirm previous suggestions that the N(HI)-weighted mean metallicity of sub-DLAs exceeds that of DLAs at all redshifts studied, even after making ionization corrections for sub-DLAs. The absorber toward PHL 1598 shows significant dust depletion. The absorbers toward PHL 1226 and PKS 0439-433 show the S/P ratio consistent with solar, i.e., they lack a profound odd-even effect. The absorber toward Q0439-433 shows super-solar Mn/Fe. For several sub-DLAs at z<0.5, [N/S] is below the level expected for secondary N production, suggesting a delay in the release of the secondary N or a tertiary N production mechanism. We constrain the electron density using Si II* and C II* absorption. We also report different metallicity vs. Delta V_90 relations for sub-DLAs and DLAs. For two sub-DLAs with detections of emission lines from the underlying galaxies, our measurements of the absorption-line metallicities are consistent with the emission-line metallicities, suggesting that metallicity gradients are not significant in these galaxies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا