No Arabic abstract
By observing the near-infrared spectrum of the quasar PG 1116+215 at z = 0.176 and combining with the HST/FOS spectrum, we obtained the relative strengths of three permitted OI lines ({lambda}1304, {lambda}8446, and {lambda}11287) in a quasar for the first time. The photon flux ratios of the OI lines of the quasar were compared with those previously measured in a Seyfert 1 and six narrow-line Seyfert 1s. No significant differences were found in the OI line flux ratios between the quasar and the other Seyferts, suggesting that the gas density in the OI and FeII line-emitting regions in the quasar is of the same order as those in low-luminosity AGNs. It was also found that the line width of OI {lambda}11287 is significantly narrower than that of Ly{alpha}, which is consistent with OI and FeII emission occurring in the partly ionized regions at the outermost portion of the broad-line region where velocities are small.
(Abridged) We have analyzed Chandra LETG and XMM-Newton RGS spectra towards the z=0.177 quasar PG 1116+215, a sightline that is rendered particularly interesting by the HST detection of several OVI and HI broad Lyman-alpha absorption lines that may be associated with the warm-hot intergalactic medium. We performed a search for resonance K-alpha absorption lines from OVII and OVIII at the redshifts of the detected far-ultraviolet lines. We detected an absorption line in the Chandra spectra at 5.2 sigma confidence level at wavelengths corresponding to OVIII K-alpha at z=0.0911+-0.0004+-0.0005 (statistical followed by systematic error). This redshift is within 3 sigma of that of a HI broad Lyman-alpha of b=130 km/s at z=0.09279+-0.00005. We have also analyzed the available XMM-Newton RGS data towards PG 1116+215. Unfortunately, the XMM-Newton data are not suitable to investigate this line because of instrumental features at the wavelengths of interest. At the same redshift, the Chandra and XMM-Newton spectra have OVII K-alpha absorption line features of significance 1.5 sigma and 1.8 sigma, respectively. We also analyzed the available SDSS spectroscopic galaxy survey data towards PG 1116+215 in the redshift range of interest. We found evidence for a galaxy filament that intersects the PG 1116+215 sightline and additional galaxy structures that may host WHIM. The combination of HST, Chandra, XMM-Newton and SDSS data indicates that we have likely detected a multi-temperature WHIM at z=0.091-0.093 towards PG 1116+215.
The existence of intermediate-width emission line regions (IELRs) in active galactic nuclei has been discussed for over two decades. A consensus, however, is yet to be arrived at due to the lack of convincing evidence for their detection. We present a detailed analysis of the broadband spectrophotometry of the partially obscured quasar OI 287. The ultraviolet intermediate-width emission lines (IELs) are very prominent, in high contrast to the corresponding broad emission lines (BELs) which are heavily suppressed by dust reddening. Assuming that the IELR is virialized, we estimated its distance to the central black hole of $sim 2.9$ pc, similar to the dust sublimation radius of $sim 1.3$ pc. Photo-ionization calculations suggest that the IELR has a hydrogen density of $sim 10^{8.8}-10^{9.4} ~ rm cm^{-3}$, within the range of values quoted for the dusty torus near the sublimation radius. Both its inferred location and physical conditions suggest that the IELR originates from the inner surface of the dusty torus. In the spectrum of this quasar, we identified only one narrow absorption-line system associated with the dusty material. With the aid of photo-ionization model calculations, we found that the obscuring material might originate from an outer region of the dusty torus. We speculate that the dusty torus, which is exposed to the central ionizing source, may produce IELs through photo-ionization processes, while also obscure BELs as a natural coronagraph. Such a coronagraph could be found in a large number of partially obscured quasars and be a useful tool to study IELRs.
UV, visible, and near-infrared spectroscopy is used to study the transitions of neutral oxygen leading to the emission of broad OI $lambda$8446, $lambda$11287 and $lambda$1304 in Active Galactic Nuclei. From the strength of the former two lines, contrary to the general belief, we found that in six out of seven galaxies, L-beta fluorescence is not the only mechanism responsible for the formation of these three lines. Because OI $lambda$13165 is almost reduced to noise level, continuum fluorescence is ruled out as an additional excitation mechanism, but the presence of OI $lambda$7774 in one of the objects suggests that collisional ionization may have an important role in the formation of OI $lambda$8446. The usefulness of the OI lines as a reliable reddening indicator for the broad line region is discussed. The values of E(B-V) derived from the OI $lambda 1304/lambda$8446 ratio agree with those obtained using other reddening indicators. The observations point toward a break in the one-to-one photon relation between OI $lambda$8446 and OI $lambda$1304, attributable to several destruction mechanisms that may affect the latter line.
We present the analysis of four XMM-Newton observations of the narrow-line quasar PG 1543+489 at z=0.400 carried out over a rest-frame time-scale of about three years. The X-ray spectrum is characterized by a broad, relativistic iron K_alpha emission line and a steep photon index, which can be both explained by a ionized reflection model, where the source of X-ray photons is presumably very close to the black hole. If this were the case, strong light-bending effects are expected, and actually they provide the most plausible explanation for the large equivalent width (EW=3.1+/-0.8 keV in the source rest frame) of the iron line. Although the light-bending model provides a good description of the X-ray data of PG 1543+489, it is not possible to rule out an absorption model, where obscuring matter partially covers the X-ray source. However, the apparent lack of variations in the properties of the absorber over the time-scale probed by our observations may indicate that this model is less likely.
Recently, convincing evidence was found for extremely large X-ray absorption by column densities $> 10^{23} cm^{-2}$ in broad absorption line quasars. One consequence of this is that any soft X-ray emission from these QSOs would be the scattered light or leaked light from partially covering absorbing material. A detection of the unabsorbed soft X-ray and absorbed hard X-ray compo nent will allow to determine the total column density as well as the effective covering factor of the absorbing material, which can be hardly obtained from the UV absorption lines. Brinkmann et al. (1999) showed that both the unabsorbed and absorbed components are detected in the nearby very bright broad absorption line quasar PG 1411+442. In this letter, we make a further analysis of the broad band X-ray spectrum and the UV spectrum from HST, and demonstrate that broad absorption lines are completely saturated at the bottom of absorption troughs.