Do you want to publish a course? Click here

An Extreme Analogue of $epsilon$ Aurigae: An M-giant Eclipsed Every 69 Years by a Large Opaque Disk Surrounding a Small Hot Source

371   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present TYC 2505-672-1 as a newly discovered and remarkable eclipsing system comprising an M-type red giant that undergoes a ~3.45 year long, near-total eclipse (depth of ~4.5 mag) with a very long period of ~69.1 yr. TYC 2505-672-1 is now the longest-period eclipsing binary system yet discovered, more than twice as long as that of the currently longest-period system, $epsilon$ Aurigae. We show from analysis of the light curve including both our own data and historical data spanning more than 120 yr and from modeling of the spectral energy distribution, both before and during eclipse, that the red giant primary is orbited by a moderately hot source (T$_{eff}$~8000 K) that is itself surrounded by an extended, opaque circumstellar disk. From the measured ratio of luminosities, the radius of the hot companion must be in the range 0.1-0.5 Rsun (depending on the assumed radius of the red giant primary), which is an order of magnitude smaller than that for a main sequence A star and 1-2 orders of magnitude larger than that for a white dwarf. The companion is therefore most likely a stripped red giant subdwarf-B type star destined to become a He white dwarf. It is however somewhat cooler than most sdB stars, implying a very low mass for this pre-He-WD star. The opaque disk surrounding this hot source may be a remnant of the stripping of its former hydrogen envelope. However, it is puzzling how this object became stripped, given that it is at present so distant (orbital semi-major axis of ~24 AU) from the current red giant primary star. Extrapolating from our calculated ephemeris, the next eclipse should begin in early UT 2080 April and end in mid UT 2083 September (eclipse center UT 2081 December 24). This system is poised to become an exemplar of a very rare class of systems, even more extreme in several respects than the well studied archetype $epsilon$ Aurigae.



rate research

Read More

We collected rich series of RV measurements covering last 110 years and photometric observations from the past 6 primary eclipses, complemented them by our new observations and derived a new precise ephemeris and an orbital solution of epsilon Aur.
95 - C. Melis 2009
We report identification of the first unambiguous example of what appears to be a new class of first-ascent giant stars that are actively accreting gas and dust and that are surrounded by substantial dusty disks. These old stars, who are nearing the end of their lives, are experiencing a rebirth into characteristics typically associated with newborn stars. The F2-type first-ascent giant star TYC 4144 329 2 is in a wide separation binary system with an otherwise normal G8 IV star, TYC 4144 329 1. From Keck near-infrared imaging and high-resolution spectroscopy we are able to determine that these two stars are $sim$1 Gyr old and reside at a distance of $sim$550 pc. One possible explanation for the origin of the accreting material is common-envelope interaction with a low-mass stellar or sub-stellar companion. The gaseous and dusty material around TYC 4144 329 2, as it is similar to the primordial disks observed around young classical T Tauri stars, could potentially give rise to a new generation of planets and/or planetesimals.
We report on a total of 106 nights of optical interferometric observations of the $epsilon$ Aurigae system taken during the last 14 years by four beam combiners at three different interferometric facilities. This long sequence of data provides an ideal assessment of the system prior to, during, and after the recent 2009-2011 eclipse. We have reconstructed model-independent images from the 10 in-eclipse epochs which show that a disk-like object is indeed responsible for the eclipse. Using new 3D, time-dependent modeling software, we derive the properties of the F-star (diameter, limb darkening), determine previously unknown orbital elements ($Omega$, $i$), and access the global structures of the optically thick portion of the eclipsing disk using both geometric models and approximations of astrophysically relevant density distributions. These models may be useful in future hydrodynamical modeling of the system. Lastly, we address several outstanding research questions including mid-eclipse brightening, possible shrinking of the F-type primary, and any warps or sub-features within the disk.
164 - Paula S. Teixeira (1 , 2 , 3 2009
We present 5 to 15 micron Spitzer Infrared Spectrograph (IRS) low resolution spectral data of a candidate debris disk around an M4.5 star identified as a likely member of the ~40 Myr old cluster NGC2547. The IRS spectrum shows a silicate emission feature, indicating the presence of warm, small, (sub)micron-sized dust grains in the disk. Of the fifteen previously known candidate debris disks around M-type stars, the one we discuss in this paper is the first to have an observed mid-infrared spectrum and is also the first to have measured silicate emission. We combined the IRS data with ancillary data (optical, JHKs, and Spitzer InfraRed Array Camera and 24 micron data) to build the spectral energy distribution (SED) of the source. Monte Carlo radiation transfer modeling of the SED characterized the dust disk as being very flat (h100=2AU) and extending inward within at least 0.13AU of the central star. Our analysis shows that the disk is collisionally dominated and is likely a debris disk.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا