Do you want to publish a course? Click here

Kernels of Toeplitz operators

341   0   0.0 ( 0 )
 Added by Andreas Hartmann
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Toeplitz operators are met in different fields of mathematics such as stochastic processes, signal theory, completeness problems, operator theory, etc. In applications, spectral and mapping properties are of particular interest. In this survey we will focus on kernels of Toeplitz operators. This raises two questions. First, how can one decide whether such a kernel is non trivial? We will discuss in some details the results starting with Makarov and Poltoratski in 2005 and their succeeding authors concerning this topic. In connection with these results we will also mention some intimately related applications to completeness problems, spectral gap problems and P{o}lya sequences. Second, if the kernel is non-trivial, what can be said about the structure of the kernel, and what kind of information on the Toeplitz operator can be deduced from its kernel? In this connection we will review a certain number of results starting with work by Hayashi, Hitt and Sarason in the late 80s on the extremal function.



rate research

Read More

Let $Omega$ be a bounded Reinhardt domain in $mathbb{C}^n$ and $phi_1,ldots,phi_m$ be finite sums of bounded quasi-homogeneous functions. We show that if the product of Toeplitz operators $T_{phi_m}cdots T_{phi_1}=0$ on the Bergman space on $Omega$, then $phi_j=0$ for some $j$.
In this paper we discuss the multipliers between range spaces of co-analytic Toeplitz operators.
145 - Guangfu Cao , Li He 2021
For any real $beta$ let $H^2_beta$ be the Hardy-Sobolev space on the unit disk $D$. $H^2_beta$ is a reproducing kernel Hilbert space and its reproducing kernel is bounded when $beta>1/2$. In this paper, we study composition operators $C_varphi$ on $H^2_beta$ for $1/2<beta<1$. Our main result is that, for a non-constant analytic function $varphi:DtoD$, the operator $C_{varphi }$ has dense range in $H_{beta }^{2}$ if and only if the polynomials are dense in a certain Dirichlet space of the domain $varphi(D)$. It follows that if the range of $C_{varphi }$ is dense in $H_{beta }^{2}$, then $varphi $ is a weak-star generator of $H^{infty}$. Note that this conclusion is false for the classical Dirichlet space $mathfrak{D}$. We also characterize Fredholm composition operators on $H^{2}_{beta }$.
92 - Beno^it F. Sehba 2017
We prove some characterizations of Schatten class Toeplitz operators on Bergman spaces of tube domains over symmetric cones for small exponents.
169 - Xiaonan Ma 2008
We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا