Do you want to publish a course? Click here

Zero products of Toeplitz operators on Reinhardt domains

70   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Let $Omega$ be a bounded Reinhardt domain in $mathbb{C}^n$ and $phi_1,ldots,phi_m$ be finite sums of bounded quasi-homogeneous functions. We show that if the product of Toeplitz operators $T_{phi_m}cdots T_{phi_1}=0$ on the Bergman space on $Omega$, then $phi_j=0$ for some $j$.



rate research

Read More

92 - Beno^it F. Sehba 2017
We prove some characterizations of Schatten class Toeplitz operators on Bergman spaces of tube domains over symmetric cones for small exponents.
Toeplitz operators are met in different fields of mathematics such as stochastic processes, signal theory, completeness problems, operator theory, etc. In applications, spectral and mapping properties are of particular interest. In this survey we will focus on kernels of Toeplitz operators. This raises two questions. First, how can one decide whether such a kernel is non trivial? We will discuss in some details the results starting with Makarov and Poltoratski in 2005 and their succeeding authors concerning this topic. In connection with these results we will also mention some intimately related applications to completeness problems, spectral gap problems and P{o}lya sequences. Second, if the kernel is non-trivial, what can be said about the structure of the kernel, and what kind of information on the Toeplitz operator can be deduced from its kernel? In this connection we will review a certain number of results starting with work by Hayashi, Hitt and Sarason in the late 80s on the extremal function.
186 - Yiyuan Zhang , Guangfu Cao , Li He 2021
In this paper, we investigate the boundedness of Toeplitz product $T_{f}T_{g}$ and Hankel product $H_{f}^{*} H_{g}$ on Fock-Sobolev space for two polynomials $f$ and $g$ in $z,overline{z}inmathbb{C}^{n}$. As a result, the boundedness of Toeplitz operator $T_{f}$ and Hankel operator $H_{f}$ with the polynomial symbol $f$ in $z,overline{z}inmathbb{C}^{n}$ is characterized.
The Leray transform and related boundary operators are studied for a class of convex Reinhardt domains in $mathbb C^2$. Our class is self-dual; it contains some domains with less than $C^2$-smooth boundary and also some domains with smooth boundary and degenerate Levi form. $L^2$-regularity is proved, and essential spectra are computed with respect to a family of boundary measures which includes surface measure. A duality principle is established providing explicit unitary equivalence between operators on domains in our class and operators on the corresponding polar domains. Many of these results are new even for the classical case of smoothly bounded strongly convex Reinhardt domains.
In this paper we discuss the multipliers between range spaces of co-analytic Toeplitz operators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا