Do you want to publish a course? Click here

SHIPS: A new setup for the investigation of swift heavy ion induced particle emission and surface modifications

59   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The irradiation with fast ions with kinetic energies of > 10 MeV leads to the deposition of a high amount of energy along their trajectory (up to several ten keV/nm). The energy is mainly transferred to the electronic subsystem and induces different secondary processes of excitations which result in significant material modifications. A new setup to study these ion induced effects on surfaces will be described in this paper. The setup combines a variable irradiation chamber with different techniques of surface characterizations like scanning probe microscopy, time-of-flight secondary ion and neutral mass spectrometry, as well as low energy electron diffraction under ultra high vacuum conditions, and is mounted at a beamline of the universal linear accelerator (UNILAC) of the GSI facility in Darmstadt, Germany. Here, samples can be irradiated with high-energy ions with a total kinetic energy up to several GeVs under different angles of incidence. Our setup enables the preparation and in-situ analysis of different types of sample systems ranging from metals to insulators. Time-of-flight secondary ion mass spectrometry enables us to study the chemical composition of the surface, while scanning probe microscopy allows a detailed view into the local electrical and morphological conditions of the sample surface down to atomic scales. With the new setup particle emission during irradiation as well as persistent modifications of the surface after irradiation can thus be studied. We present first data obtained with the new setup, including a novel measuring protocol for time-of-flight mass spectrometry with the GSI UNILAC accelerator.



rate research

Read More

228 - E. Gardes 2013
We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/mu m. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.
Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and UHV endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2e10 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe$_2$, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe$_2$. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit.
228 - K. Shrestha , K. Gofryk 2018
We have designed and developed a new experimental setup, based on the 3-omega method, to measure thermal conductivity, heat capacity and electrical resistivity of a variety of samples in a broad temperature range (2-550 K) and under magnetic fields up to 9 T. The validity of this method is tested by measuring various types of metallic (copper, platinum, and constantan) and insulating (SiO_2) materials, which have a wide range of thermal conductivity values (1-400 Wm-1K-1). We have successfully employed this technique for measuring the thermal conductivity of two actinide single crystals, uranium dioxide, and uranium nitride. This new experimental approach for studying nuclear materials will help to advance reactor fuel development and understanding. We have also shown that this experimental setup can be adapted to the Physical Property Measurement System (Quantum Design) environment and/or other cryocooler systems.
In this paper we present a new measurement setup, where a transitionedge sensor detector array is used to detect X-rays in particle induced X-ray emission measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window to couple in the radiation. For the best pixel, the measured instrumental energy resolution was 3.06 eV full width at half maximum at 5.9 keV.We discuss the current status of the project, benefits of transition-edge sensors when used in particle induced X-ray emission spectroscopy, and the results from the first measurements.
90 - M Trassinelli 2016
Investigations of the complex behavior of the magnetization of manganese arsenide thin films due to defects induced by irradiation of slow heavy ions are presented. In addition to the thermal hysteresis suppression already highlighted in M. Trassinelli et al., Appl. Phys. Lett. 104, 081906 (2014), we report here on new local magnetic features recorded by a magnetic force microscope at different temperatures close to the characteristic sample phase transition. Complementary measurements of the global magnetization measurements in different conditions (applied magnetic field and temperatures) enable to complete the film characterization. The obtained results suggest that the ion bombardment produces regions where the local mechanical constraints are significantly different from the average, promoting the local presence of magneto-structural phases far from the equilibrium. These regions could be responsible for the thermal hysteresis suppression previously reported, irradiation-induced defects acting as seeds in the phase transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا