No Arabic abstract
Investigations of the complex behavior of the magnetization of manganese arsenide thin films due to defects induced by irradiation of slow heavy ions are presented. In addition to the thermal hysteresis suppression already highlighted in M. Trassinelli et al., Appl. Phys. Lett. 104, 081906 (2014), we report here on new local magnetic features recorded by a magnetic force microscope at different temperatures close to the characteristic sample phase transition. Complementary measurements of the global magnetization measurements in different conditions (applied magnetic field and temperatures) enable to complete the film characterization. The obtained results suggest that the ion bombardment produces regions where the local mechanical constraints are significantly different from the average, promoting the local presence of magneto-structural phases far from the equilibrium. These regions could be responsible for the thermal hysteresis suppression previously reported, irradiation-induced defects acting as seeds in the phase transition.
The magnetic behavior of truncated conical nanoparticles in patterned thin films is investigated as a function of their size and shape. Using a scaling technique, phase diagrams giving the relative stability of characteristic internal magnetic structures of the particles are obtained. The role of the uniaxial anisotropy in determining the magnetic properties of such systems is discussed, and a simple method for stablishing its strength is proposed.
The large curvature effects on micromagnetic energy of a thin ferromagnetic film with nonlocal dipolar energy are considered. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled by engineering a special type of periodic surface shape structure. Similar effects can be achieved by a significant surface roughness in the film. We show that in general the anisotropy can point in an arbitrary direction depending on the surface curvature. We provide simple examples of these periodic surface structures to demonstrate how to engineer particular anisotropies in the film.
Thin films of the ferromagnetic metal SrRuO3 (SRO) show a varying easy magnetization axis depending on the epitaxial strain and undergo a metal-to-insulator transition with decreasing film thickness. We have investigated the magnetic properties of SRO thin films with varying thicknesses fabricated on SrTiO3(001) substrates by soft x-ray magnetic circular dichroism (XMCD) at the Ru M2,3 edge. Results have shown that, with decreasing film thickness, the film changes from ferromagnetic to non-magnetic around 3monolayer thickness, consistent with previous magnetization and magneto-optical Kerr effect measurements. The orbital magnetic moment perpendicular to the film was found to be ~ 0.1{mu}B/Ru atom, and remained nearly unchanged with decreasing film thickness while the spin magnetic moment decreases. Mechanism for the formation of the orbital magnetic moment is discussed based on the electronic structure of the compressively strained SRO film.
Bismuth chalcogenides are the most studied 3D topological insulators. As a rule, at low temperatures thin films of these materials demonstrate positive magnetoresistance due to weak antilocalization. Weak antilocalization should lead to resistivity decrease at low temperatures; in experiments, however, resistivity grows as temperature decreases. From transport measurements for several thin films (with various carrier density, thickness, and carrier mobility), and by using purely phenomenological approach, with no microscopic theory, we show that the low temperature growth of the resistivity is accompanied by growth of the Hall coefficient, in agreement with diffusive electron-electron interaction correction mechanism. Our data reasonably explain the low-temperature resistivity upturn.
We present the first investigation on the effect of highly charged ion bombardment on a manganese arsenide thin film. The MnAs films, 150 nm thick, are irradiated with 90 keV Ne$^{9+}$ ions with a dose varying from $1.6times10^{12}$ to $1.6times10^{15}$ ions/cm$^2$. The structural and magnetic properties of the film after irradiation are investigated using different techniques, namely, X-ray diffraction, magneto-optic Kerr effect and magnetic force microscope. Preliminary results are presented. From the study of the lattice spacing, we measure a change on the film structure that depends on the received dose, similarly to previous studies with other materials. Investigations on the surface show a strong modification of its magnetic properties.