Do you want to publish a course? Click here

Constraints on black hole massess with timescales of variations in blazars

83   0   0.0 ( 0 )
 Added by Hong Tao Liu
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we investigated the issue of black hole masses and minimum timescales of jet emission for blazars. We proposed a sophisticated model that sets an upper limit to the central black hole masses $M_{bullet}$ with the minimum timescales $Delta t^{rm{ob}}_{rm{min}}$ of variations observed in blazars. The value of $Delta t^{rm{ob}}_{rm{min}}$ presents an upper limit to the size of blob in jet. The blob is assumed to be generated in the jet-production region in the vicinity of black hole, and then the expanding blob travels outward along the jet. We applied the model to 32 blazars, 29 of which were detected in gamma rays by satellites, and these $Delta t^{rm{ob}}_{rm{min}}$ are on the order of hours with large variability amplitudes. In general, these $M_{bullet}$ estimated with this method are not inconsistent with those masses reported in the literatures. This model is natural to connect $M_{bullet}$ with $Delta t^{rm{ob}}_{rm{min}}$ for blazars, and seems to be applicable to constrain $M_{bullet}$ in the central engines of blazars.



rate research

Read More

To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of two flat spectrum radio quasars, 3C 454.3 and 3C 279, plus one BL Lac, S5 0716+714, all of which have been exhibiting remarkably high activity and pronounced variability at all wavelengths. CCD magnitudes in B, V, R and I pass-bands were determined for $sim$ 7000 new optical observations from 114 nights made during 2011 - 2014, with an average length of $sim$ 4 h each, at seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse timescales. Discrete correlation functions were computed among B, V, R, and I observations, to search for any time delays. We found weak correlations in some cases with no significant time lags. The structure function method was used to estimate any characteristic time-scales of variability. We also investigated the spectral energy distribution of the three blazars using B, V, R, I, J and K pass-band data. We found that the sources almost always follows a bluer-when-brighter trend. We discuss possible physical causes of the observed spectral variability.
74 - A. Agarwal , , A. C. Gupta 2015
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of 3C 454.3, 3C 279 and S5 0716+714. CCD magnitudes in B, V, R and I pass-bands were determined for $sim$ 7000 new optical observations from 114 nights made during 2011 - 2014, with an average length of $sim$ 4 h each, at seven optical telescopes. We measured multiband optical flux and colour variations on diverse timescales. We also investigated its spectral energy distribution using B, V, R, I, J and K pass-band data. We discuss possible physical causes of the observed spectral variability.
241 - R.-F. Shen 2019
At about 70 solar masses, the recently-discovered dark object orbited by a B-type star in the system LB-1 is difficult to understand as the end point of standard stellar evolution, except as a binary black hole (BBH). LB-1 shows a strong, broad H-alpha emission line that is best attributed to a gaseous disk surrounding the dark mass. We use the observed H-alpha line shape, particularly its wing extension, to constrain the inner radius of the disk and thereby the separation of a putative BBH. The hypothesis of a current BBH is effectively ruled out on the grounds that its merger time must be a small fraction of the current age of the B star. The hypothesis of a previous BBH that merged to create the current dark mass is also effectively ruled out by the low orbital eccentricity, due to the combination of mass loss and kick resulted from gravitational wave emission in any past merger. We conclude that the current dark mass is a single black hole produced by the highly mass-conserving, monolithic collapse of a massive star.
192 - C. M. Fromm , M. Perucho , E. Ros 2014
Relativistic jets in active galactic nuclei represent one of the most powerful phenomena in the Universe. They form in the surroundings of the supermassive black holes as a by-product of accretion onto the central black hole in active galaxies. The flow in the jets propagates at velocities close to the speed of light. The distance between the first part of the jet that is visible in radio images (core) and the black hole is still a matter of debate. Only very-long-baseline interferometry observations resolve the innermost compact regions of the radio jet. Those can access the jet base, and combining data at different wavelenghts, address the physical parameters of the outflow from its emission. We have performed an accurate analysis of the frequency-dependent shift of the VLBI core location for a multi-wavelength set of images of the blazar CTA 102 including data from 6 cm down to 3 mm. The measure of the position of the central black hole, with mass $sim 10^{8.93},M_odot$, in the blazar CTA 102 reveals a distance of $sim 8times10^4$ gravitational radii to the 86 GHz core, in agreement with similar measures obtained for other blazars and distant radio galaxies, and in contrast with recent results for the case of nearby radio galaxies, which show distances between the black hole and the radio core that can be two orders of magnitude smaller.
We determined the spin value of supermassive black hole (SMBH) in active galactic nuclei (AGN) with investigated ultraviolet-to-optical spectral energy distribution, presented in the sample of Shang et al. (2005). The estimates of the spin values have been produced at the base of the standard geometrically thin accretion disk model and with using the results of the polarimetric observations. The polarimetric observations are very important for determining the inclination angle of AGN disk. We presented the results of our determinations of the radiation efficiency of the accretion flow and values of the spins of SMBHs, that derives the coefficient of radiation efficiency. The majority of SMBHs of AGNs from Shang et al. (2005) sample are to be the Kerr black holes with the high spin value.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا