Do you want to publish a course? Click here

Multi-band optical-NIR variability of blazars on diverse timescales

180   0   0.0 ( 0 )
 Added by Aditi Agarwal
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of two flat spectrum radio quasars, 3C 454.3 and 3C 279, plus one BL Lac, S5 0716+714, all of which have been exhibiting remarkably high activity and pronounced variability at all wavelengths. CCD magnitudes in B, V, R and I pass-bands were determined for $sim$ 7000 new optical observations from 114 nights made during 2011 - 2014, with an average length of $sim$ 4 h each, at seven optical telescopes: four in Bulgaria, one in Greece, and two in India. We measured multiband optical flux and colour variations on diverse timescales. Discrete correlation functions were computed among B, V, R, and I observations, to search for any time delays. We found weak correlations in some cases with no significant time lags. The structure function method was used to estimate any characteristic time-scales of variability. We also investigated the spectral energy distribution of the three blazars using B, V, R, I, J and K pass-band data. We found that the sources almost always follows a bluer-when-brighter trend. We discuss possible physical causes of the observed spectral variability.



rate research

Read More

74 - A. Agarwal , , A. C. Gupta 2015
To search for optical variability on a wide range of timescales, we have carried out photometric monitoring of 3C 454.3, 3C 279 and S5 0716+714. CCD magnitudes in B, V, R and I pass-bands were determined for $sim$ 7000 new optical observations from 114 nights made during 2011 - 2014, with an average length of $sim$ 4 h each, at seven optical telescopes. We measured multiband optical flux and colour variations on diverse timescales. We also investigated its spectral energy distribution using B, V, R, I, J and K pass-band data. We discuss possible physical causes of the observed spectral variability.
We present our optical photometric observations of three TeV blazars, PKS 1510-089, PG 1553+113 and Mrk 501 taken using two telescopes in India, one in Bulgaria, one in Greece and one in Serbia during 2012 - 2014. These observations covered a total of 95 nights with a total of 202 B filter frames, 247 images in V band, 817 in R band while 229 images were taken in the I filter. This work is focused on multi-band flux and colour variability studies of these blazars on diverse timescales which are useful in understanding the emission mechanisms. We studied the variability characteristics of above three blazars and found all to be active over our entire observational campaigns. We also searched for any correlation between the brightness of the sources and their colour indices. During the times of variability, no significant evidence for the sources to display spectral changes correlated with magnitude was found on timescales of a few months. We briefly discuss the possible physical mechanisms most likely responsible for the observed flux variability.
We have monitored the flat spectrum radio quasar, 3C 279, in the optical $B$, $V$, $R$ and $I$ passbands from 2018 February to 2018 July for 24 nights, with a total of 716 frames, to study flux, colour and spectral variability on diverse timescales. 3C,279 was observed using seven different telescopes: two in India, two in Argentina, two in Bulgaria and one in Turkey to understand the nature of the source in optical regime. The source was found to be active during the whole monitoring period and displayed significant flux variations in $B$, $V$, $R$, and $I$ passbands. Variability amplitudes on intraday basis varied from 5.20% to 17.9%. A close inspection of variability patterns during our observation cycle reveals simultaneity among optical emissions from all passbands. During the complete monitoring period, progressive increase in the amplitude of variability with frequency was detected for our target. The amplitudes of variability in $B$, $V$, $R$ and $I$ passbands have been estimated to be 177%, 172%, 171% and 158%, respectively. Using the structure function technique, we found intraday timescales ranging from $sim 23$ minutes to about 115 minutes. We also studied colour-magnitude relationship and found indications of mild bluer-when-brighter trend on shorter timescales. Spectral indices ranged from 2.3 to 3.0 with no clear trend on long term basis. We have also generated spectral energy distributions for 3C,279 in optical $B$, $V$, $R$ and $I$ passbands for 17 nights. Finally, possible emission mechanisms causing variability in blazars are discussed briefly.
We monitored BL Lacertae for 13 nights in optical B, V, R, and I bands during October and November 2014 including quasi-simultaneous observations in V and R bands using two optical telescopes in India. We have studied multi-band optical flux variations, colour variation and spectral changes in this blazar. Source was found to be active during the whole monitoring period and showed significant intraday variability on 3 nights in V and R filters while displayed hints of variability on 6 other dates in R passband and on 2 nights in V filter. From the colour-magnitude analysis of the source we found that the spectra of the target gets flatter as it becomes brighter on intra-night timescale. Using discrete correlation technique, we found that intraday light curves in both V and R filters are almost consistent and well correlated with each other. We also generated spectral energy distribution (SED) of the target using the B, V, R, and I data sets for all 13 nights which could help us investigate the physical process responsible for the observed variations in BL Lacertae objects. We also discuss possible physical causes of the observed spectral variability.
We present multi-wavelength spectral and temporal variability analysis of PKS 0027-426 using optical griz observations from DES (Dark Energy Survey) between 2013-2018 and VOILETTE (VEILS Optical Light curves of Extragalactic TransienT Events) between 2018-2019 and near infrared (NIR) JKs observations from VEILS (VISTAExtragalactic Infrared Legacy Survey) between 2017-2019. Multiple methods of cross-correlation of each combination of light curve provides measurements of possible lags between optical-optical, optical-NIR, and NIR-NIR emission, for each observation season and for the entire observational period. Inter-band time lag measurements consistently suggest either simultaneous emission or delays between emission regions on timescales smaller than the cadences of observations. The colour-magnitude relation between each combination of filters was also studied to determine the spectral behaviour of PKS 0027-426. Our results demonstrate complex colour behaviour that changes between bluer when brighter (BWB), stable when brighter (SWB) and redder when brighter (RWB) trends over different timescales and using different combinations of optical filters. Additional analysis of the optical spectra is performed to provide further understanding of this complex spectral behaviour.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا