No Arabic abstract
We obtain leading- and next-to-leading order predictions of chiral perturbation theory for several prominent moments of nucleon structure functions. These free-parameter free results turn out to be in overall agreement with the available empirical information on nearly all of the considered moments, in the region of low-momentum transfer ($Q^2 < 0.3$ GeV$^2$). Especially surprising is the situation for the spin polarizability $delta_{LT}$, which thus far was not reproducible in chiral perturbation theory for proton and neutron simultaneously. This problem, known as the $delta_{LT}$ puzzle, is not seen in the present calculation.
We calculate the lambda-nucleon scattering phase shifts and mixing angles by applying time-ordered perturbation theory to the manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory. Scattering amplitudes are obtained by solving the corresponding coupled-channel integral equations that have a milder ultraviolet behavior compared to their non-relativistic analogs. This allows us to consider the removed cutoff limit in our leading-order calculations also in the $^3P_0$ and $^3P_1$ partial waves. We find that, in the framework we are using, at least some part of the higher-order contributions to the baryon-baryon potential in these channels needs to be treated nonperturbatively and demonstrate how this can be achieved in a way consistent with quantum field theoretical renormalization for the leading contact interactions. We compare our results with the ones of the non-relativistic approach and lattice QCD phase shifts obtained for non-physical pion masses.
We calculate the octet baryon magnetic moments in covariant baryon chiral perturbation theory with the extended-on-mass-shell renormalization scheme up to next-to-next-to-leading order. At this order, there are nine low-energy constants, which cannot be uniquely determined by the seven experimental data alone. We propose two strategies to circumvent this problem. First, we assume that chiral perturbation theory has a certain convergence rate and use this as one additional constraint to fix the low-energy constants by fitting to the experimental data. Second, we fit to lattice QCD simulations to determine the low-energy constants. We then compare the resulting predictions of the light and strange quark mass dependence of the octet baryon magnetic moments by the three mostly studied formulations of baryon chiral perturbation theory, namely, the extended-on-mass-shell, the infrared, and the heavy baryon approach. It is shown that once more precise lattice data become available, one will learn more about the convergence pattern of baryon chiral perturbation theory.
Inspired by the discovery of the spin-$frac{1}{2}$ doubly charmed baryon $Xi_{cc}^{++}$ and the subsequent theoretical studies of its magnetic moments, we study the magnetic moments of its spin-$frac{3}{2}$ heavy quark spin symmetry counterparts, up to the next-to-leading order in covariant baryon chiral perturbation theory (BChPT) with the extended-on-mass-shell renormalization (EOMS) scheme. With the tree-level contributions fixed by the quark model while the two low energy constants (LECs) $C$ and $H$ controlling the loop contributions determined in two ways: the quark model (case 1) and lattice QCD simulations together with the quark model (case 2), we study the quark mass dependence of the magnetic moments and compare them with the predictions of the heavy baryon chiral perturbation theory (HB ChPT). It is shown that the difference is sizable in case 1, but not in case 2 due to the smaller LECs $C$ and $H$, similar to the case of spin-$frac{1}{2}$ doubly charmed baryons. Second, we predict the magnetic moments of the spin-$frac{3}{2}$ doubly charmed baryons and compare them with those of other approaches. The predicted magnetic moments in case 2 for the spin-$frac{3}{2}$ doubly charmed baryons are closer to those of other approaches. In addition, the large differences in case 1 and case 2 for the predicted magnetic moments may indicate the inconsistency between the quark model and the lattice QCD simulations, which should be checked by future experimental or more lattice QCD data.
We present a calculation of the $eta$-$eta$ mixing in the framework of large-$N_c$ chiral perturbation theory. A general expression for the $eta$-$eta$ mixing at next-to-next-to-leading order (NNLO) is derived, including higher-derivative terms up to fourth order in the four momentum, kinetic and mass terms. In addition, the axial-vector decay constants of the $eta$-$eta$ system are determined at NNLO. The numerical analysis of the results is performed successively at LO, NLO, and NNLO. We investigate the influence of one-loop corrections, OZI-rule-violating parameters, and $mathcal{O}(N_c p^6)$ contact terms.
We report an analysis of the octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-next-to-next-to-leading order with and without the virtual decuplet contributions. Particular attention is paid to the finite-volume corrections and the finite lattice spacing effects on the baryon masses. A reasonable description of all the publicly available $n_f=2+1$ lattice QCD data is achieved.Utilyzing the Feynman-Hellmann theorem, we determine the nucleon sigma terms as $sigma_{pi N}=55(1)(4)$ MeV and $sigma_{sN}=27(27)(4)$ MeV.