No Arabic abstract
We calculate the octet baryon magnetic moments in covariant baryon chiral perturbation theory with the extended-on-mass-shell renormalization scheme up to next-to-next-to-leading order. At this order, there are nine low-energy constants, which cannot be uniquely determined by the seven experimental data alone. We propose two strategies to circumvent this problem. First, we assume that chiral perturbation theory has a certain convergence rate and use this as one additional constraint to fix the low-energy constants by fitting to the experimental data. Second, we fit to lattice QCD simulations to determine the low-energy constants. We then compare the resulting predictions of the light and strange quark mass dependence of the octet baryon magnetic moments by the three mostly studied formulations of baryon chiral perturbation theory, namely, the extended-on-mass-shell, the infrared, and the heavy baryon approach. It is shown that once more precise lattice data become available, one will learn more about the convergence pattern of baryon chiral perturbation theory.
We study the scattering of a pseudoscalar meson off one ground state octet baryon in covariant baryon chiral perturbation theory (BChPT) up to the next-to-next-to-leading order. The inherent power counting breaking terms are removed within extended-on-mass-shell scheme. We perform the first combined study of the pion-nucleon and kaon-nucleon scattering data in covariant BChPT and show that it can provide a reasonable description of the experimental data. In addition, we find that it is possible to fit the experimental baryon masses and the pion-nucleon and kaon-nucleon scattering data simultaneously at this order, thus providing a consistent check on covariant BChPT. We compare the scattering lengths of all the pertinent channels with available experimental data and those of other approaches. In addition, we have studied the leading order contributions of the virtual decuplet and found that they can improve the description of the $pi N$ phase shifts near the $Delta(1232)$ peak, while they have negligible effects on the description of the $K N$ phase shifts.
The two photon decay width of the neutral pion is analyzed within the combined framework of Chiral Perturbation Theory and the 1/Nc expansion up to order p^6 and p^4 times 1/Nc in the decay amplitude. The eta is explicitly included in the analysis. It is found that the decay width is enhanced by about 4.5% due to the isospin-breaking induced mixing of the pure U(3) states. This effect, which is of leading order in the low energy expansion, is shown to persist nearly unchanged at next to leading order. The chief prediction for the width with its estimated uncertainty is 8.10+-0.08 eV. This prediction at the 1% level makes the upcomming precision measurement of the decay width even more urgent. Observations on the eta and eta can also be made, especially about their mixing, which is shown to be significantly affected by next to leading order corrections.
We report an analysis of the octet baryon masses using the covariant baryon chiral perturbation theory up to next-to-next-to-next-to-leading order with and without the virtual decuplet contributions. Particular attention is paid to the finite-volume corrections and the finite lattice spacing effects on the baryon masses. A reasonable description of all the publicly available $n_f=2+1$ lattice QCD data is achieved.Utilyzing the Feynman-Hellmann theorem, we determine the nucleon sigma terms as $sigma_{pi N}=55(1)(4)$ MeV and $sigma_{sN}=27(27)(4)$ MeV.
We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are consistent with each other. Although the finite lattice spacing discretization effects up to $mathcal{O}(a^2)$ can be safely ignored, but the finite volume corrections cannot even for configurations with $M_phi L>4$. As an application, we predicted the octet baryon sigma terms using the Feynman-Hellmann theorem. In particular, the pion- and strangeness-nucleon sigma terms are found to be $sigma_{pi N} = 55(1)(4)$ MeV and $sigma_{sN} = 27(27)(4)$ MeV, respectively.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.