Do you want to publish a course? Click here

Spin Dynamics Simulation of the magnetization reversal process in FM/AFM bilayer structures by Anisotropic Heisenberg Model

254   0   0.0 ( 0 )
 Added by Evandro
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have studied the magnetization reversal process in FM/AFM bilayer structures through of spin dynamics simulation. It has been observed that the magnetization behavior is different at each branch of the hysteresis loop as well as the exchange-bias behavior. On the descending branch a sudden change of the magnetization is observed while on the ascending branch is observed a bland change of the magnetization. The occurrence of the asymmetry in the hysteresis loop and the variation in the exchange-bias is due to anisotropy which is introduced only in the coupling between ferromagnetic (FM) and antiferromagnetic (AFM) layers.



rate research

Read More

The magnetization process of the spin-1 Heisenberg dimer model with axial and rhombic single-ion anisotropy terms is particularly investigated in connection with recent experimental high-field measurements performed on the single-crystal sample of the homodinuclear nickel(II) compound [Ni2(Medpt)2(ox)(H2O)2](ClO4)2.2H2O (Medpt=methyl-bis(3-aminopropyl)amine). The results obtained from the exact numerical diagonalization reveal a striking magnetization process with a marked spatial dependence on the applied magnetic field for arbitrary but non-zero single-ion anisotropy. It is demonstrated that the field range, which corresponds to an intermediate magnetization plateau emerging at a half of the saturation magnetization, basically depends on single-ion anisotropy terms as well as a spatial orientation of the applied field. The breakdown of the intermediate magnetization plateau is discussed at length in relation to the single-ion anisotropy strength.
We analyze the antiferromagnetic $text{SU}(3)$ Heisenberg chain by means of the Density Matrix Renormalization Group (DMRG). The results confirm that the model is critical and the computation of its central charge and the scaling dimensions of the first excited states show that the underlying low energy conformal field theory is the $text{SU}(3)_1$ Wess-Zumino-Novikov-Witten model.
138 - J. Grollier 2002
We analyse the effect of the applied field (Happl) on the current-driven magnetization reversal in pillar-shaped Co/Cu/Co trilayers, where we observe two different types of transition between the parallel (P) and antiparallel (AP) magnetic configurations of the Co layers. If Happl is weaker than a rather small threshold value, the transitions between P and AP are irreversible and relatively sharp. For Happl exceding the threshold value, the same transitions are progressive and reversible. We show that the criteria for the stability of the P and AP states and the experimentally observed behavior can be precisely accounted for by introducing the current-induced torque of the spin transfer models in a Landau-Lifschitz-Gilbert equation. This approach also provides a good description for the field dependence of the critical currents.
Microwave assisted magnetization reversal has been investigated in a bilayer system of Pt/ferromagnet by detecting a change in the polarity of the spin pumping signal. The reversal process is studied in two material systems, Pt/CoFeB and Pt/NiFe, for different aspect ratios. The onset of the switching behavior is indicated by a sharp transition in the spin pumping voltage. At a threshold value of the external field, the switching process changes from partial to full reversal with increasing microwave power. The proposed method provides a simple way to detect microwave assisted magnetization reversal.
We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work demonstrates large tunable spin-orbit effects in magnetically-ordered materials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا