Do you want to publish a course? Click here

Study of baryon octet electromagnetic form factors in perturbative chiral quark model

242   0   0.0 ( 0 )
 Added by Xuyang Liu
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

The electromagnetic properties of baryon octet are studied in the perturbative chiral quark model (PCQM). The relativistic quark wave function is extracted by fitting the theoretical results of the proton charge form factor to experimental data and the predetermined quark wave function is applied to study the electromagnetic form factors of other octet baryons as well as magnetic moments, charge and magnetic radii. The PCQM results are found, based on the predetermined quark wave function, in good agreement with experimental data.



rate research

Read More

In this paper we present the derivation as well as the numerical results for the electromagnetic form factors of the nucleon within the chiral quark soliton model in the semiclassical quantization scheme. The model is based on semibosonized SU(2) Nambu -- Jona-Lasinio lagrangean, where the boson fields are treated as classical ones. Other observables, namely the nucleon mean squared radii, the magnetic moments, and the nucleon--$Delta$ splitting are calculated as well. The calculations have been done taking into account the quark sea polarization effects. The final results, including rotational $1/N_c$ corrections, are compared with the existing experimental data, and they are found to be in a good agreement for the constituent quark mass of about 420 MeV. The only exception is the neutron electric form factor which is overestimated.
Dalitz decays of a hyperon resonance to a ground-state hyperon and an electron-positron pair can give access to some information about the composite structure of hyperons. We present expressions for the multi-differential decay rates in terms of general transition form factors for spin-parity combinations J^P = 1/2^+/-, 3/2^+/- of the hyperon resonance. Even if the spin of the initial hyperon resonance is not measured, the self-analyzing weak decay of the final ground-state hyperon contains information about the relative phase between combinations of transition form factors. This relative phase is non-vanishing because of the unstable nature of the hyperon resonance. If all form factor combinations in the differential decay formulae are replaced by their respective values at the photon point, one obtains a QED type approximation, which might be interpreted as characterizing hypothetical hyperons with point-like structure. We compare the QED type approximation to a more realistic form factor scenario for the lowest-lying singly-strange hyperon resonances. In this way we explore which accuracy in the measurements of the differential Dalitz decay rates is required in order to distinguish the composite-structure case from the pointlike case. Based on the QED type approximation we obtain as a by-product a rough prediction for the ratio between the Dalitz decay width and the corresponding photon decay width.
158 - A.J. Buchmann 2004
The C2/M1 ratio of the electromagnetic N->Delta(1232) transition, which is important for determining the geometric shape of the nucleon, is shown to be related to the neutron elastic form factor ratio G_C^n/G_M^n. The proposed relation holds with good accuracy for the entire range of momentum transfers where data are available.
The self-energies of the full set of flavor SU(3) octet and decuplet baryons are computed within a relativistic chiral effective theory framework. The leading nonanalytic chiral behavior is derived for the octet and decuplet masses, and a finite-range regularization consistent with Lorentz and gauge invariance is applied to account for the finite size of the baryons. Using a four-dimensional dipole form factor, the relative importance of various meson-baryon loop contributions to the self-energies is studied numerically as a function of the dipole range parameter and meson mass, and comparison is made between the relativistic results and earlier approximations within the heavy baryon limit.
We develop techniques to calculate the four Delta electromagnetic form factors using lattice QCD, with particular emphasis on the sub-dominant electric quadrupole form factor that probes deformation of the Delta. Results are presented for pion masses down to approximately 350 MeV for three cases: quenched QCD, two flavors of dynamical Wilson quarks, and three flavors of quarks described by a mixed action combining domain wall valence quarks and dynamical staggered sea quarks. The magnetic moment of the Delta is chirally extrapolated to the physical point and the Delta charge density distributions are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا