Do you want to publish a course? Click here

Delta-baryon electromagnetic form factors in lattice QCD

195   0   0.0 ( 0 )
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We develop techniques to calculate the four Delta electromagnetic form factors using lattice QCD, with particular emphasis on the sub-dominant electric quadrupole form factor that probes deformation of the Delta. Results are presented for pion masses down to approximately 350 MeV for three cases: quenched QCD, two flavors of dynamical Wilson quarks, and three flavors of quarks described by a mixed action combining domain wall valence quarks and dynamical staggered sea quarks. The magnetic moment of the Delta is chirally extrapolated to the physical point and the Delta charge density distributions are discussed.



rate research

Read More

104 - C. Alexandrou 2003
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition $gamma Nto Delta$ are evaluated both in quenched lattice QCD at $beta=6.0$ and using two dynamical Wilson fermions simulated at $beta=5.6$. The dipole transition form factor is accurately determined at several values of momentum transfer. On the lattices studied in this work, the electric quadrupole amplitude is found to be non-zero yielding a negative value for the ratio, $ R_{EM}$, of electric quadrupole to magnetic dipole amplitudes at three values of momentum transfer.
133 - C. Alexandrou 2007
The electromagnetic nucleon to Delta transition form factors are evaluated using two degenerate flavors of dynamical Wilson fermions and using dynamical sea staggered fermions with domain wall valence quarks. The two subdominant quadrupole form factors are evaluated for the first time in full QCD to sufficient accuracy to exclude a zero value, which is taken as a signal for deformation in the nucleon-Delta system. For the Coulomb quadrupole form factor the unquenched results show deviations from the quenched results at low q^2 bringing dynamical lattice results closer to experiment, thereby confirming the importance of pion cloud contributions on this quantity.
113 - C. Alexandrou 2004
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition gamma Nto Delta are calculated in quenched lattice QCD at beta=6.0 with Wilson fermions. Using a new method combining an optimal combination of interpolating fields for the $Delta$ and an overconstrained analysis, we obtain statistically accurate results for the dipole form factor and for the ratios of the electric and Coulomb quadrupole amplitudes to the magnetic dipole amplitude, R_{EM} and R_{SM}, up to momentum transfer squared 1.5 GeV^2. We show for the first time using lattice QCD that both R_{EM} and R_{SM} are non-zero and negative, in qualitative agreement with experiment and indicating the presence of deformation in the N- Delta system.
Lattice QCD can provide a direct determination of meson electromagnetic form factors, making predictions for upcoming experiments at Jefferson Lab. The form factors are a reflection of the bound-state nature of the meson and so these calculations give information about how confinement by QCD affects meson internal structure. The region of high squared (space-like) momentum-transfer, $Q^2$, is of particular interest because perturbative QCD predictions take a simple form in that limit that depends on the meson decay constant. We previously showed incite{jonnaff} that, up to $Q^2$ of 6 $mathrm{GeV}^2$, the form factor for a `pseudo-pion made of strange quarks was significantly larger than the asymptotic perturbative QCD result and showed no sign of heading towards that value at higher $Q^2$. Here we give predictions for real mesons, the $K^+$ and $K^0$, in anticipation of JLAB results for the $K^+$ in the next few years. We also give results for a heavier meson, the $eta_c$, up to $Q^2$ of 25 $mathrm{GeV}^2$ for a comparison to perturbative QCD in a higher $Q^2$ regime.
We evaluate the strange nucleon electromagnetic form factors using an ensemble of gauge configurations generated with two degenerate maximally twisted mass clover-improved fermions with mass tuned to approximately reproduce the physical pion mass. In addition, we present results for the disconnected light quark contributions to the nucleon electromagnetic form factors. Improved stochastic methods are employed leading to high-precision results. The momentum dependence of the disconnected contributions is fitted using the model-independent z-expansion. We extract the magnetic moment and the electric and magnetic radii of the proton and neutron by including both connected and disconnected contributions. We find that the disconnected light quark contributions to both electric and magnetic form factors are non-zero and at the few percent level as compared to the connected. The strange form factors are also at the percent level but more noisy yielding statistical errors that are typically within one standard deviation from a zero value.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا