Do you want to publish a course? Click here

Phase transitions in Ising model induced by weight redistribution on weighted regular networks

383   0   0.0 ( 0 )
 Added by Li Menghui
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

In order to investigate the role of the weight in weighted networks, the collective behavior of the Ising system on weighted regular networks is studied by numerical simulation. In our model, the coupling strength between spins is inversely proportional to the corresponding weighted shortest distance. Disordering link weights can effectively affect the process of phase transition even though the underlying binary topological structure remains unchanged. Specifically, based on regular networks with homogeneous weights initially, randomly disordering link weights will change the critical temperature of phase transition. The results suggest that the redistribution of link weights may provide an additional approach to optimize the dynamical behaviors of the system.



rate research

Read More

The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the topology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which core nodes are much more ordered than peripheral nodes. Interestingly, the susceptibility shows double peaks at two distinct temperatures. We find that, if the connections between core and periphery increase linearly with network size, the first peak does not exhibit any size-dependent effect, and the second one diverges in the limit of infinite network size. Otherwise, if the connections between core and periphery scale sub-linearly with the network size, both peaks of the susceptibility diverge as power laws in the thermodynamic limit. This suggests the appearance of a double transition phenomenon in the Ising model for the latter case. Moreover, we develop a mean-field theory that agrees well with the simulations.
The Ising model on annealed complex networks with degree distribution decaying algebraically as $p(K)sim K^{-lambda}$ has a second-order phase transition at finite temperature if $lambda> 3$. In the absence of space dimensionality, $lambda$ controls the transition strength; mean-field theory applies for $lambda >5$ but critical exponents are $lambda$-dependent if $lambda < 5$. Here we show that, as for regular lattices, the celebrated Lee-Yang circle theorem is obeyed for the former case. However, unlike on regular lattices where it is independent of dimensionality, the circle theorem fails on complex networks when $lambda < 5$. We discuss the importance of this result for both theory and experiments on phase transitions and critical phenomena. We also investigate the finite-size scaling of Lee-Yang zeros in both regimes as well as the multiplicative logarithmic corrections which occur at $lambda=5$.
78 - Kai Qi , Michael Bachmann 2018
By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex systems. A strategy of systematically identifying and locating independent and dependent phase transitions of any order is proposed. The power of the generalized method is demonstrated in applications to the ferromagnetic Ising model and a coarse-grained model for polymer adsorption onto a substrate. The results shed new light on the intrinsic phase structure of systems with cooperative behavior.
The continuous ferromagnetic-paramagnetic phase transition in the two-dimensional Ising model has already been excessively studied by conventional canonical statistical analysis in the past. We use the recently developed generalized microcanonical inflection-point analysis method to investigate the least-sensitive inflection points of the microcanonical entropy and its derivatives to identify transition signals. Surprisingly, this method reveals that there are potentially two additional transitions for the Ising system besides the critical transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا