The resistivity and the mobility of Carbon doped GaAs nanowires have been studied for different doping concentrations. Surface effects have been evaluated by comparing upassivated with passivated nanowires. We directly see the influence of the surface: the pinning of the Fermi level and the consequent existence of a depletion region lead to an increase of the mobility up to 30 cm^2/(V*s) for doping concentrations lower than 3*10^18 cm^-3. Electron beam induced current measurements show that the minority carrier diffusion path can be as high as 190 nm for passivated nanowires.
The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy has been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also demonstrate that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.
The recent discovery of excellent thermoelectric properties and topological surface states in SnTe-based compounds has attracted extensive attention in various research areas. Indium doped SnTe is of particular interest because, depending on the doping level, it can either generate resonant states in the bulk valence band leading to enhanced thermoelectric properties, or induce superconductivity that coexists with topological states. Here we report on the vapor deposition of In-doped SnTe nanowires and the study of their surface oxidation and thermoelectric properties. The nanowire growth is assisted by Au catalysts, and their morphologies vary as a function of substrate position and temperature. Transmission electron microscopy characterization reveals the formation of amorphous surface in single crystalline nanowires. X-ray photoelectron spectroscopy studies suggest that the nanowire surface is composed of In2O3, SnO2, Te and TeO2 which can be readily removed by argon ion sputtering. Exposure of the cleaned nanowires to atmosphere yields rapid oxidation of the surface within only one minute. Characterizations of electrical conductivity {sigma}, thermopower S, and thermal conductivity k{appa} were performed on the same In-doped nanowire which shows suppressed {sigma} and k{appa} but enhanced S yielding an improved thermoelectric figure of merit ZT than the undoped SnTe.
In this paper, the reported experimental data in [Sci. Rep., 2012, 2, 533] related to electrical transport properties in bulk ZnO, ZnMgO/ZnO, and ZnMgO/ZnO/ZnMgO single and double heterostructures were analyzed quantitatively and the most important scattering parameters for controlling electron concentration and electron mobility were obtained. Treatment of intrinsic mechanisms included polar-optical phonon scattering, piezoelectric scattering and acoustic deformation potential scattering. For extrinsic mechanisms, ionized impurity, dislocation scattering, and strain-induced fields were included. For bulk ZnO, the reported experimental data were corrected for removing the effects of a degenerate layer at the ZnO/sapphire interface via a two layer Hall effect model. Also, donor density, acceptor density and donor activation energy were determined via the charge balance equation. This sample exhibited hopping conduction below 50K and dislocation scattering closely controlled electron mobility closely. The obtained results indicated that the enhancement of electron mobility in double sample, compared with the single one, can be attributed to the reduction of dislocation density, two dimensional impurity density in the potential well due to background impurities, and/or interface charge and strain-induced fields, which can be related to better electron confinement in the channel and enhancement in the sheet carrier concentration of 2DEG in this sample.
The structure-property relation of nanostructured Al-doped ZnO thin films has been investigated in detail through a systematic variation of structure and morphology, with particular emphasis on how they affect optical and electrical properties. A variety of structures, ranging from compact polycristalline films to mesoporous, hierarchically organized cluster assemblies, are grown by Pulsed Laser Deposition at room temperature at different oxygen pressures. We investigate the dependence of functional properties on structure and morphology and show how the correlation between electrical and optical properties can be studied to evaluate energy gap, conduction band effective mass and transport mechanisms. Understanding these properties opens the way for specific applications in photovoltaic devices, where optimized combinations of conductivity, transparency and light scattering are required.
A phase-stable superposition of femtosecond pulses and their second harmonic induces ultrashort microampere current bursts in single unbiased GaAs nanowires. Current injection relies on quantum interference of one- and two-photon absorption pathways.