Do you want to publish a course? Click here

Femtoscopic scales in $p+p$ and $p+$Pb collisions in view of the uncertainty principle

105   0   0.0 ( 0 )
 Added by Yuri Sinyukov
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

A method for quantum corrections of Hanbury-Brown/Twiss (HBT) interferometric radii produced by semi-classical event generators is proposed. These corrections account for the basic indistinguishability and mutual coherence of closely located emitters caused by the uncertainty principle. A detailed analysis is presented for pion interferometry in $p+p$ collisions at LHC energy ($sqrt{s}=7$ TeV). A prediction is also presented of pion interferometric radii for $p+$Pb collisions at $sqrt{s}=5.02$ TeV. The hydrodynamic/hydrokinetic model with UrQMD cascade as afterburner is utilized for this aim. It is found that quantum corrections to the interferometry radii improve significantly the event generator results which typically overestimate the experimental radii of small systems. A successful description of the interferometry structure of $p+p$ collisions within the corrected hydrodynamic model requires the study of the problem of thermalization mechanism, still a fundamental issue for ultrarelativistic $A+A$ collisions, also for high multiplicity $p+p$ and $p+$Pb events.



rate research

Read More

287 - V. Topor Pop 2013
Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated within the framework of the {small HIJING/B=B v2.0} model. We compute the nuclear modification factor $R_{rm PbPb}^{rm D}$, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of colour fields (as characterized by the string tension $kappa$), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for future beauty mesons measurements have been included. Ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) $ p + p$ collisions at 2.76 TeV are also discussed. Minimum bias $p + p$ collisions which constitute theoretical baseline in our calculations are studied at the centre of mass energies $sqrt{s}$ = 2.76 TeV and 7 TeV.
% An analysis is made of the particle composition (hadrochemistry) of the final state in proton-proton (p-p), proton-lead (p-Pb) and lead-lead (Pb-Pb) collisions as a function of the charged particle multiplicity ($dNchdeta$). The thermal model is used to determine the chemical freeze-out temperature as well as the radius and strangeness saturation factor $gamma_s$. Three different ensembles are used in the analysis namely, the grand canonical ensemble, the canonical ensemble with exact strangeness conservation and the canonical ensemble with exact baryon number, strangeness and electric charge conservation. It is shown that for high multiplicities (at least 20 charged hadrons in the mid-rapidity interval considered) the three ensembles lead to the same results.
Azimuthal particle correlations have been extensively studied in the past at various collider energies in p-p, p-A, and A-A collisions. Hadron-correlation measurements in heavy-ion collisions have mainly focused on studies of collective (flow) effects at low-$p_T$ and parton energy loss via jet quenching in the high-$p_T$ regime. This was usually done without event-by-event particle identification. In this paper, we present two-particle correlations with identified trigger hadrons and identified associated hadrons at mid-rapidity in Monte Carlo generated events. The primary purpose of this study was to investigate the effect of quantum number conservation and the flavour balance during parton fragmentation and hadronization. The simulated p-p events were generated with PYTHIA 6.4 with the Perugia-0 tune at $sqrt{s}=7$ TeV. HIJING was used to generate $0-10%$ central Pb-Pb events at $sqrt{s_{rm NN}}=2.76$ TeV. We found that the extracted identified associated hadron spectra for charged pion, kaon, and proton show identified trigger-hadron dependent splitting. Moreover, the identified trigger-hadron dependent correlation functions vary in different $p_T$ bins, which may show the presence of collective/nuclear effects.
63 - X. Feal , C. Pajares , 2018
The thermalization of the particles produced in collisions of small size objects can be achieved by quantum entanglement of the partons of the initial state as it was analyzed recently in proton-proton collisions. We extend such study to Pb-Pb collisions and to different multiplicities of proton-proton collisions. We observe that, in all cases, the effective temperature is approximately proportional to the hard scale of the collision. We show that such relation between the thermalization temperature and the hard scale can be explained as a consequence of the clustering of the color sources. The fluctuations on the number of parton states decreases with multiplicity in Pb-Pb collisions as far as the width of the transverse momentum distributions decreases, contrary to the p-p case. We relate these fluctuations to the temperature time fluctuations by means of a Langevin equation for the white noise due to the quench of a hard parton collision.
We calculate various azimuthal angle distributions for three jets produced in the forward rapidity region with transverse momenta $p_T>20,mathrm{GeV}$ in proton-proton (p-p) and proton-lead (p-Pb) collisions at center of mass energy $5.02,,mathrm{TeV}$. We use the multi-parton extension of the so-called small-$x$ Improved Transverse Momentum Dependent factorization (ITMD). We study effects related to change from the standard $k_T$-factorization to ITMD factorization as well as changes as one goes from p-p collision to p-Pb. We observe rather large differences in the distribution when we change the factorization approach, which allows to both improve the small-$x$ TMD gluon distributions as well as validate and improve the factorization approach. We also see significant depletion of the nuclear modification ratio, indicating a possibility of searches for saturation effects using trijet final states in a more exclusive way than for dijets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا