Do you want to publish a course? Click here

Statistics of the work done by splitting a one-dimensional quasi-condensate

107   0   0.0 ( 0 )
 Added by Spyros Sotiriadis
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by experiments on splitting one-dimensional quasi-condensates, we study the statistics of the work done by a quantum quench in a bosonic system. We discuss the general features of the probability distribution of the work and focus on its behaviour at the lowest energy threshold, which develops an edge singularity. A formal connection between this probability distribution and the critical Casimir effect in thin classical films shows that certain features of the edge singularity are universal as the post-quench gap tends to zero. Our results are quantitatively illustrated by an exact calculation for non-interacting bosonic systems. The effects of finite system size, dimensionality, and non-zero initial temperature are discussed in detail.



rate research

Read More

We derive analogues of the Jarzynski equality and Crooks relation to characterise the nonequilibrium work associated with changes in the spring constant of an overdamped oscillator in a quadratically varying spatial temperature profile. The stationary state of such an oscillator is described by Tsallis statistics, and the work relations for certain processes may be expressed in terms of q-exponentials. We suggest that these identities might be a feature of nonequilibrium processes in circumstances where Tsallis distributions are found.
126 - L. Barbiero , L. DellAnna 2016
We study the real time evolution of the correlation functions in a globally quenched interacting one dimensional lattice system by means of time adaptive density matrix renormalization group. We find a clear light-cone behavior quenching the repulsive interaction from the gapped density wave regime. The spreading velocity increases with the final values of the interaction and then saturates at a certain finite value. In the case of a Luttinger liquid phase as the initial state, for strong repulsive interaction quenches, a more complex dynamics occurs as a result of bound state formations. From the other side in the attractive regime, depending on where connected correlation functions are measured, one can observe a delay in the starting time evolution and a coexistence of ballistic and localized signals.
By calculating correlation functions for the Lieb-Liniger model based on the algebraic Bethe ansatz method, we conduct a finite-size scaling analysis of the eigenstate thermalization hypothesis (ETH) which is considered to be a possible mechanism of thermalization in isolated quantum systems. We find that the ETH in the weak sense holds in the thermodynamic limit even for an integrable system although it does not hold in the strong sense. Based on the result of the finite-size scaling analysis, we compare the contribution of the weak ETH to thermalization with that of yet another thermalization mechanism, the typicality, and show that the former gives only a logarithmic correction to the latter.
149 - Spyros Sotiriadis 2016
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems.
In this paper, we study the probability distribution of the observable $s = (1/N)sum_{i=N-N+1}^N x_i$, with $1 leq N leq N$ and $x_1<x_2<cdots< x_N$ representing the ordered positions of $N$ particles in a $1d$ one-component plasma, i.e., $N$ harmonically confined charges on a line, with pairwise repulsive $1d$ Coulomb interaction $|x_i-x_j|$. This observable represents an example of a truncated linear statistics -- here the center of mass of the $N = kappa , N$ (with $0 < kappa leq 1$) rightmost particles. It interpolates between the position of the rightmost particle (in the limit $kappa to 0$) and the full center of mass (in the limit $kappa to 1$). We show that, for large $N$, $s$ fluctuates around its mean $langle s rangle$ and the typical fluctuations are Gaussian, of width $O(N^{-3/2})$. The atypical large fluctuations of $s$, for fixed $kappa$, are instead described by a large deviation form ${cal P}_{N, kappa}(s)simeq exp{left[-N^3 phi_kappa(s)right]}$, where the rate function $phi_kappa(s)$ is computed analytically. We show that $phi_{kappa}(s)$ takes different functional forms in five distinct regions in the $(kappa,s)$ plane separated by phase boundaries, thus leading to a rich phase diagram in the $(kappa,s)$ plane. Across all the phase boundaries the rate function $phi(kappa,s)$ undergoes a third-order phase transition. This rate function is also evaluated numerically using a sophisticated importance sampling method, and we find a perfect agreement with our analytical predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا