Do you want to publish a course? Click here

Estimation of distances within the Milky Way using tidal streams

91   0   0.0 ( 0 )
 Added by Daniele Fantin Dr
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

During the past 20 years, numerous stellar streams have been discovered in both the Milky Way and the Local Group. These streams have been tidally torn from orbiting systems, which suggests that most of them should roughly trace the orbit of their progenitors around the Galaxy. As a consequence, they play a fundamental role in understanding the formation and evolution of our Galaxy. This project is based on the possibility of applying a technique developed by Binney in 2008 to various tidal streams and overdensities in the Galaxy. The aim is to develop an efficient method to constrain the Galactic gravitational potential, to determine its mass distribution, and to test distance measurements. Here we apply the technique to the Grillmair & Dionatos cold stellar stream. In the case of noise-free data, the results show that the technique provides excellent discrimination against incorrect potentials and that it is possible to predict the heliocentric distance very accurately. This changes dramatically when errors are taken into account, which wash out most of the results. Nevertheless, it is still possible to rule out spherical potentials and set constraints on the distance of a given stream.



rate research

Read More

289 - Avon Huxor , Eva Grebel 2015
We assemble 121 spectroscopically-confirmed halo carbon stars, drawn from the literature, exhibiting measurable variability in the Catalina Surveys. We present their periods and amplitudes, which are used to estimate distances from period-luminosity relationships. The location of the carbon stars - and their velocities when available - allow us to trace the streams of the Sagittarius (Sgr) dwarf spheroidal galaxy. These are compared to a canonical numerical simulation of the accretion of Sgr. We find that the data match this model well for heliocentric distances of 15-50 kpc, except for a virtual lack of carbon stars in the trailing arm just north of the Galactic Plane, and there is only tentative evidence of the leading arm south of the Plane. The majority of the sample can be attributed to the Sgr accretion. We also find groups of carbon stars which are not part of Sgr; most of which are associated with known halo substructures. A few have no obvious attribution and may indicate new substructure. We find evidence that there may be a structure behind the Sgr leading stream apocentre, at ~100 kpc, and a more distant extension to the Pisces Overdensity also at ~100 kpc. We study a further 75 carbon stars for which no good period data could be obtained, and for which NIR magnitudes and colours are used to estimate distances. These data add support for the features found at distances beyond 100 kpc.
We present results on the extra-tidal features of the Milky Way globular cluster NGC 7099, using deep gr photometry obtained with the Dark Energy Camera (DECam). We reached nearly 6 mag below the cluster Main Sequence (MS) turnoff, so that we dealt with the most suitable candidates to trace any stellar structure located beyond the cluster tidal radius. From star-by-star reddening corrected color-magnitude diagrams (CMDs) we defined four adjacent strips along the MS, for which we built the respective stellar density maps, once the contamination by field stars was properly removed. The resulting field star cleaned stellar density maps show a short tidal tail and some scattered debris. Such extra-tidal features are hardly detected when much shallower Gaia DR2 data sets are used and the same CMD field star cleaning procedure is applied. Indeed, by using 2.5 magnitudes below the cluster MS turnoff as the faintest limit (G < 20.5 mag), cluster members turned out to be distributed within the clusters tidal radius, and some hints for field star density variations are found across a circle of radius 3.5deg centered on the cluster and with similar CMD features as cluster stars. The proper motion distribution of these stars is distinguishable from that of the cluster, with some superposition, which resembles that of stars located beyond 3.5deg from the cluster center.
According to the current galaxy formation paradigm, mergers and interactions play an important role in shaping present-day galaxies. The remnants of this merger activity can be used to constrain galaxy formation models. In this work we use a sample of thirty hydrodynamical simulations of Milky Way-mass halos, from the AURIGA project, to generate surface brightness maps and search for the brightest stream in each halo as a function of varying limiting magnitude. We find that none of the models shows signatures of stellar streams at $mu_{r}^{lim} leq 25$ mag arcsec$^{-2}$. The stream detection increases significantly between 27 and 28 mag arcsec$^{-2}$. Nevertheless, even at 30 mag arcsec$^{-2}$, 13 percent of our models show no detectable streams. We study the properties of the brightest streams progenitors (BSPs). We find that BSPs are accreted within a broad range of infall times, from 1.6 to 10 Gyr ago, with only 25 percent accreted within the last 5 Gyrs; thus most BSPs correspond to relatively early accretion events. We also find that 37 percent of the BSPs survive to the present day. The median infall times for surviving and disrupted BSPs are 5.6 and 6.7 Gyr, respectively. We find a clear relation between infall time and infall mass of the BSPs, such that more massive progenitors tend to be accreted at later times. However, we find that the BSPs are not, in most cases, the dominant contributor to the accreted stellar halo of each galaxy.
170 - Maude Gull 2021
We present high-resolution Magellan/MIKE spectra of 22 bright ($9<V<13.5$) metal-poor stars ($-3.18<mbox{[Fe/H]}<-1.37$) in three different stellar streams, the Helmi debris stream, the Helmi trail stream, and the $omega$ Centauri progenitor stream. We augment our Helmi debris sample with results for ten stars by Roederer et al. 2010 (arXiv:1001.1745), for a total of 32 stars. Detailed chemical abundances of light elements as well as heavy neutron-capture elements have been determined for our 22 stars. All three streams contain carbon-enhanced stars. For 13 stars, neutron-capture element lines were detectable and they all show signatures in agreement with the scaled solar $r$-process pattern, albeit with a large spread of $-0.5<mbox{[Eu/Fe]}<+1.3$. Eight of these stars show an additional small $s$-process contribution superposed onto their $r$-process pattern. This could be discerned because of the relatively high $S/N$ of the spectra given that the stars are close by in the halo. Our results suggest that the progenitors of these streams experienced one or more $r$-process events, such as a neutron star merger or another prolific $r$-process source, early on that widely enriched these host systems before their accretion by the Milky Way. The small $s$-process contribution suggests the presence of AGB stars and associated local (inhomogeneous) enrichment as part of the ongoing chemical evolution by low mass stars. Stars in stellar streams may thus be a promising avenue for studying the detailed history of large dwarf galaxies and their role in halo assembly with easily accessible targets for high-quality spectra of many stars.
105 - Heidi Jo Newberg 2021
Dwarf galaxies that come too close to larger galaxies suffer tidal disruption; the differential gravitational force between one side of the galaxy and the other serves to rip the stars from the dwarf galaxy so that they instead orbit the larger galaxy. This process produces tidal streams of stars, which can be found in the stellar halo of the Milky Way, as well as in halos of other galaxies. This chapter provides a general introduction to tidal streams, including the mechanism through which the streams are created, the history of how they were discovered, and the observational techniques by which they can be detected. In addition, their use in unraveling galaxy formation history and the distribution of dark matter in galaxies is discussed, as is the interaction between these dwarf galaxy satellites and the disk of the larger galaxy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا