No Arabic abstract
Energetic feedback from Supernovae and stellar winds can drive galactic winds. Dwarf galaxies, due to their shallower potential wells, are assumed to be more vulnerable to this phenomenon. Metal loss through galactic winds is also commonly invoked to explain the low metal content of dwarf galaxies. Our main aim in this paper is to show that galactic mass cannot be the only parameter determining the fraction of metals lost by a galaxy. In particular, the distribution of gas must play an equally important role. We perform 2-D chemo-dynamical simulations of galaxies characterized by different gas distributions, masses and gas fractions. The gas distribution can change the fraction of lost metals through galactic winds by up to one order of magnitude. In particular, disk-like galaxies tend to loose metals more easily than roundish ones. Consequently, also the final metallicities attained by models with the same mass but with different gas distributions can vary by up to one dex. Confirming previous studies, we also show that the fate of gas and freshly produced metals strongly depends on the mass of the galaxy. Smaller galaxies (with shallower potential wells) more easily develop large-scale outflows, therefore the fraction of lost metals tends to be higher.
The Milky Way ultra-faint dwarf galaxies (UFDs) contain some of the oldest, most metal-poor stars in the Universe. We present [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], and mean [alpha/Fe], abundance ratios for 61 individual red giant branch stars across 8 UFDs. This is the largest sample of alpha abundances published to date in galaxies with absolute magnitudes M_V > -8, including the first measurements for Segue 1, Canes Venatici II, Ursa Major I, and Leo T. Abundances were determined via medium-resolution Keck/DEIMOS spectroscopy and spectral synthesis. The sample spans the metallicity range -3.4 < [Fe/H] < -1.1. With the possible exception of Segue 1 and Ursa Major II, the individual UFDs show on average lower [alpha/Fe] at higher metallicities, consistent with enrichment from Type Ia supernovae. Thus even the faintest galaxies have undergone at least a limited level of chemical self-enrichment. Together with recent photometric studies, this suggests that star formation in the UFDs was not a single burst, but instead lasted at least as much as the minimum time delay of the onset of Type Ia supernovae (~100 Myr) and less than ~2 Gyr. We further show that the combined population of UFDs has an [alpha/Fe] abundance pattern that is inconsistent with a flat, Galactic halo-like alpha abundance trend, and is also qualitatively different from that of the more luminous CVn I dSph, which does show a hint of a plateau at very low [Fe/H].
Primordial molecules were formed during the Dark Ages, i.e. the time between recombination and reionization in the early Universe. The purpose of this article is to analyze the formation of primordial molecules based on heavy elements during the Dark Ages, with elemental abundances taken from different nucleosynthesis models. We present calculations of the full non-linear equation set governing the primordial chemistry. We consider the evolution of 45 chemical species and use an implicit multistep method of variable order of precision with an adaptive stepsize control. We find that the most abundant Dark Ages molecules based on heavy elements are CH and OH. Non-standard nucleosynthesis can lead to higher heavy element abundances while still satisfying the observed primordial light abundances. In that case, we show that the abundances of molecular species based on C, N, O and F can be enhanced by two orders of magnitude compared to the standard case, leading to a CH relative abundance higher than that of HD+ or H2D+.
We analyze the role of bars in the build-up of central mass concentrations in massive, disk galaxies. Our parent sample consists of 3757 face-on disk galaxies with redshifts between 0.01 and 0.05, selected from the seventh Data Release of the Sloan Digital Sky Survey. 1555 galaxies with bars are identified using position angle and ellipticity profiles of the $i$-band light. We compare the ratio of the specific star formation rate measured in the 1-3 kpc central region of the galaxy to that measured for the whole galaxy. Galaxies with strong bars have centrally enhanced star formation; the degree of enhancement depends primarily on the ellipticity of the bar, and not on the size of the bar or on the mass or structure of the host galaxy. The fraction of galaxies with strong bars is highest at stellar masses greater than $3 times 10^{10} M_{odot}$, stellar surface densities less than $3 times 10^8 M_{odot}$ and concentration indices less than 2.5. In this region of parameter space, galaxies with strong bars either have enhanced central star formation rates, or star formation that is {em suppressed} compared to the mean. This suggests that bars may play a role in the eventual quenching of star formation in galaxies. Only 50% of galaxies with strongly concentrated star formation have strong bars, indicating that other processes such as galaxy interactions also induce central star-bursts. We also find that the ratio of the size of the bar to that of the disk depends mainly on the colour of the galaxy, suggesting that the growth and destruction of bars are regulated by gas accretion, as suggested by simulations.
Massive compact galaxies seem to be more common at high redshift than in the local universe, especially in denser environments. To investigate the fate of such massive galaxies identified at z~2 we analyse the evolution of their properties in three cosmological hydrodynamical simulations that form virialised galaxy groups of mass ~10^13 Msun hosting a central massive elliptical/S0 galaxy by redshift zero. We find that at redshift ~2 the population of galaxies with M_*> 2 10^10 Msun is diverse in terms of mass, velocity dispersion, star formation and effective radius, containing both very compact and relatively extended objects. In each simulation all the compact satellite galaxies have merged into the central galaxy by redshift 0 (with the exception of one simulation where one of such satellite galaxy survives). Satellites of similar mass at z = 0 are all less compact than their high redshift counterparts. They form later than the galaxies in the z = 2 sample and enter the group potential at z < 1, when dynamical friction times are longer than the Hubble time. Also, by z = 0 the central galaxies have increased substantially their characteristic radius via a combination of in situ star formation and mergers. Hence in a group environment descendants of compact galaxies either evolve towards larger sizes or they disappear before the present time as a result of the environment in which they evolve. Since the group-sized halos that we consider are representative of dense environments in the LambdaCDM cosmology, we conclude that the majority of high redshift compact massive galaxies do not survive until today as a result of the environment.
The hierarchical theory of galaxy formation rests on the idea that smaller galactic structures merge to form the galaxies that we see today. The past decade has provided remarkable observational support for this scenario, driven in part by advances in spectroscopic instrumentation. Multi-object spectroscopy enabled the discovery of kinematically cold substructures around the Milky Way and M31 that are likely the debris of disrupting satellites. Improvements in high-resolution spectroscopy have produced key evidence that the abundance patterns of the Milky Way halo and its dwarf satellites can be explained by Galactic chemical evolution models based on hierarchical assembly. These breakthroughs have depended almost entirely on observations of nearby stars in the Milky Way and luminous red giant stars in M31 and Local Group dwarf satellites. In the next decade, extremely large telescopes will allow observations far down the luminosity function in the known dwarf galaxies, and they will enable observations of individual stars far out in the Galactic halo. The chemical abundance census now available for the Milky Way will become possible for our nearest neighbor, M31. Velocity dispersion measurements now available in M31 will become possible for systems beyond the Local Group such as Sculptor and M81 Group galaxies. Detailed studies of a greater number of individual stars in a greater number of spiral galaxies and their satellites will test hierarchical assembly in new ways because dynamical and chemical evolution models predict different outcomes for halos of different masses in different environments.