Do you want to publish a course? Click here

The Distribution of Alpha Elements in Ultra-Faint Dwarf Galaxies

233   0   0.0 ( 0 )
 Added by Luis C Vargas
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Milky Way ultra-faint dwarf galaxies (UFDs) contain some of the oldest, most metal-poor stars in the Universe. We present [Mg/Fe], [Si/Fe], [Ca/Fe], [Ti/Fe], and mean [alpha/Fe], abundance ratios for 61 individual red giant branch stars across 8 UFDs. This is the largest sample of alpha abundances published to date in galaxies with absolute magnitudes M_V > -8, including the first measurements for Segue 1, Canes Venatici II, Ursa Major I, and Leo T. Abundances were determined via medium-resolution Keck/DEIMOS spectroscopy and spectral synthesis. The sample spans the metallicity range -3.4 < [Fe/H] < -1.1. With the possible exception of Segue 1 and Ursa Major II, the individual UFDs show on average lower [alpha/Fe] at higher metallicities, consistent with enrichment from Type Ia supernovae. Thus even the faintest galaxies have undergone at least a limited level of chemical self-enrichment. Together with recent photometric studies, this suggests that star formation in the UFDs was not a single burst, but instead lasted at least as much as the minimum time delay of the onset of Type Ia supernovae (~100 Myr) and less than ~2 Gyr. We further show that the combined population of UFDs has an [alpha/Fe] abundance pattern that is inconsistent with a flat, Galactic halo-like alpha abundance trend, and is also qualitatively different from that of the more luminous CVn I dSph, which does show a hint of a plateau at very low [Fe/H].



rate research

Read More

We present new constraints on the star formation histories of the ultra-faint dwarf (UFD) galaxies, using deep photometry obtained with the Hubble Space Telescope (HST). A galaxy class recently discovered in the Sloan Digital Sky Survey, the UFDs appear to be an extension of the classical dwarf spheroidals to low luminosities, offering a new front in efforts to understand the missing satellite problem. They are the least luminous, most dark-matter dominated, and least chemically-evolved galaxies known. Our HST survey of six UFDs seeks to determine if these galaxies are true fossils from the early universe. We present here the preliminary analysis of three UFD galaxies: Hercules, Leo IV, and Ursa Major I. Classical dwarf spheroidals of the Local Group exhibit extended star formation histories, but these three Milky Way satellites are at least as old as the ancient globular cluster M92, with no evidence for intermediate-age populations. Their ages also appear to be synchronized to within ~1 Gyr of each other, as might be expected if their star formation was truncated by a global event, such as reionization.
We present a large homogeneous set of stellar parameters and abundances across a broad range of metallicities, involving $13$ classical dwarf spheroidal (dSph) and ultra-faint dSph (UFD) galaxies. In total this study includes $380$ stars in Fornax, Sagittarius, Sculptor, Sextans, Carina, Ursa Minor, Draco, Reticulum II, Bootes I, Ursa Major II, Leo I, Segue I, and Triangulum II. This sample represents the largest, homogeneous, high-resolution study of dSph galaxies to date. With our homogeneously derived catalog, we are able to search for similar and deviating trends across different galaxies. We investigate the mass dependence of the individual systems on the production of $alpha$-elements, but also try to shed light on the long-standing puzzle of the dominant production site of r-process elements. We use data from the Keck observatory archive and the ESO reduced archive to reanalyze stars from these $13$ dSph galaxies. We automatize the step of obtaining stellar parameters, but run a full spectrum synthesis to derive all abundances except for iron. The homogenized set of abundances yielded the unique possibility to derive a relation between the onset of type Ia supernovae and the stellar mass of the galaxy. Furthermore, we derived a formula to estimate the evolution of $alpha$-elements. Placing all abundances consistently on the same scale is crucial to answer questions about the chemical history of galaxies. By homogeneously analysing Ba and Eu in the 13 systems, we have traced the onset of the s-process and found it to increase with metallicity as a function of the galaxys stellar mass. Moreover, the r-process material correlates with the $alpha$-elements indicating some co-production of these, which in turn would point towards rare core-collapse supernovae rather than binary neutron star mergers as host for the r-process at low [Fe/H] in the investigated dSph systems.
448 - R. R. Munoz 2011
The discovery of Ultra-Faint Dwarf (UFD) galaxies in the halo of the Milky Way extends the faint end of the galaxy luminosity function to a few hundred solar luminosities. This extremely low luminosity regime poses a significant challenge for the photometric characterization of these systems. We present a suite of simulations aimed at understanding how different observational choices related to the properties of a low luminosity system impact our ability to determine its true structural parameters such as half-light radius and central surface brightness. We focus on estimating half-light radii (on which mass estimates depend linearly) and find that these numbers can have up to 100% uncertainties when relatively shallow photometric surveys, such as SDSS, are used. Our simulations suggest that to recover structural parameters within 10% or better of their true values: (a) the ratio of the field-of-view to the half-light radius of the satellite must be greater than three, (b) the total number of stars, including background objects should be larger than 1000, and (c) the central to background stellar density ratio must be higher than 20. If one or more of these criteria are not met, the accuracy of the resulting structural parameters can be significantly compromised. In the context of future surveys such as LSST, the latter condition will be closely tied to our ability to remove unresolved background galaxies. Assessing the reliability of measured structural parameters will become increasingly critical as the next generation of deep wide-field surveys detects UFDs beyond the reach of current spectroscopic limits.
Self-interacting dark matter (SIDM) has gathered growing attention as a solution to the small scale problems of the collisionless cold dark matter (DM). We investigate the SIDM using stellar kinematics of 23 ultra-faint dwarf (UFD) galaxies with the phenomenological SIDM halo model. The UFDs are DM-dominated and have less active star formation history. Accordingly, they are the ideal objects to test the SIDM, as their halo profiles are least affected by the baryonic feedback processes. We found no UFDs favor non-zero self-interaction and some provide stringent constraints within the simple SIDM modeling. Our result challenges the simple modeling of the SIDM, which urges further investigation of the subhalo dynamical evolution of the SIDM.
We develop a technique to investigate the possibility that some of the recently discovered ultra-faint dwarf satellites of the Milky Way might be cusp caustics rather than gravitationally self-bound systems. Such cusps can form when a stream of stars folds, creating a region where the projected 2-D surface density is enhanced. In this work, we construct a Poisson maximum likelihood test to compare the cusp and exponential models of any substructure on an equal footing. We apply the test to the Hercules dwarf (d ~ 113 kpc, M_V ~ -6.2, e ~ 0.67). The flattened exponential model is strongly favored over the cusp model in the case of Hercules, ruling out at high confidence that Hercules is a cusp catastrophe. This test can be applied to any of the Milky Way dwarfs, and more generally to the entire stellar halo population, to search for the cusp catastrophes that might be expected in an accreted stellar halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا