Do you want to publish a course? Click here

Outflow Structure and Velocity Field of Orion Source I: ALMA Imaging of SiO Isotopologue Maser and Thermal Emission

161   0   0.0 ( 0 )
 Added by Florian Niederhofer
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J=5-4 and J=6-5) of the three silicon monoxide isotopologues 28SiO v=0, 1, 2 and 29SiO v=0 and 28Si18O v=0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow (~18 km/s, P.A. ~50deg, ~5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of the BN/KL region on the outflow emanating from Source I. The emission of the vibrationally-excited species peaks at the position of Source I. This emission is compact and not resolved at an angular resolution of ~1.5 (~600 AU at a distance of 420 pc). 2-D Gaussian fitting to individual velocity channels locates emission peaks within radii of 100 AU, i.e. they trace the innermost part of the outflow. A narrow spectral profile and spatial distribution of the v=1 J=5-4 line similar to the masing v=1 J=1-0 transition, provide evidence for the most highly rotationally excited (frequency > 200 GHz) SiO maser emission associated with Source I known to date. The maser emission will enable studies of the Source I disk-outflow interface with future ALMA longest baselines.



rate research

Read More

We present observational results of the submillimeter H2O and SiO lines toward a candidate high-mass young stellar object Orion Source I using ALMA. The spatial structures of the high excitation lines at lower-state energies of >2500 K show compact structures consistent with the circumstellar disk and/or base of the northeast-southwest bipolar outflow with a 100 au scale. The highest excitation transition, the SiO (v=4) line at band 8, has the most compact structure. In contrast, lower-excitation transitions are more extended than 200 au tracing the outflow. Almost all the line show velocity gradients perpendicular to the outflow axis suggesting rotation motions of the circumstellar disk and outflow. While some of the detected lines show broad line profiles and spatially extended emission components indicative of thermal excitation, the strong H2O lines at 321 GHz, 474 GHz, and 658 GHz with brightness temperatures of >1000 K show clear signatures of maser action.
We observed polarization of the SiO rotational transitions from Orion Source I (SrcI) to probe the magnetic field in bipolar outflows from this high mass protostar. Both 43 GHz $J$=1-0 and 86 GHz $J$=2-1 lines were mapped with $sim$20 AU resolution, using the Very Large Array (VLA) and Atacama Large Millimeter/Submillimeter Array (ALMA), respectively. The $^{28}$SiO transitions in the ground vibrational state are a mixture of thermal and maser emission. Comparison of the polarization position angles in the $J$=1-0 and $J$=2-1 transitions allows us to set an upper limit on possible Faraday rotation of $10^{4}$ radians m$^{-2}$, which would twist the $J$=2-1 position angles typically by less than 10 degrees. The smooth, systematic polarization structure in the outflow lobes suggests a well ordered magnetic field on scales of a few hundred AU. The uniformity of the polarization suggests a field strength of $sim$30 milli-Gauss. It is strong enough to shape the bipolar outflow and possibly lead to sub-Keplerian rotation of gas at the base of the outflow. The strikingly high fractional linear polarizations of 80-90% in the $^{28}$SiO $v$=0 masers require anisotropic pumping. We measured circular polarizations of 60% toward the strongest maser feature in the $v$=0 $J$=1-0 peak. Anisotropic resonant scattering (ARS) is likely to be responsible for this circular polarization. We also present maps of the $^{29}$SiO $v$=0 $J$=2-1 maser and several other SiO transitions at higher vibrational levels and isotopologues.
We present high-resolution images of the submillimeter SiO line emissions of a massive young stellar object Orion Source I using the Atacama Large Millimeter/ Submillimeter Array (ALMA) at band 8. We detected the 464 GHz SiO v=4 J=11-10 line in Source I, which is the first detection of the SiO v=4 line in star-forming regions, together with the 465 GHz 29SiO v=2 J=11-10 and the 428 GHz SiO v=2 J=10-9 lines with a resolution of 50 AU. The 29SiO v=2 J=11-10 and SiO v=4 J=11-10 lines have compact structures with the diameter of <80 AU. The spatial and velocity distribution suggest that the line emissions are associated with the base of the outflow and the surface of the edge-on disk. In contrast, SiO v=2 J=10-9 emission shows a bipolar structure in the direction of northeast-southwest low-velocity outflow with ~200 AU scale. The emission line exhibits a velocity gradient along the direction of the disk elongation. With the assumption of the ring structure with Keplerian rotation, we estimated the lower limit of the central mass to be 7 solar mass and the radius of 12 AU< r <26 AU.
We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest-southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au times 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelength. The flux density can be well fitted to the optically thick black-body spectral energy distribution (SED), and the brightness temperature is evaluated to be 700-800 K. It is much lower than that in the case of proton-electron or H- free-free radiations. Our data are consistent with the latest ALMA results by Plambeck & Wright (2016), in which the continuum emission have been proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with the smaller beam filling factor.
The mass of a protoplanetary disk limits the formation and future growth of any planet. Masses of protoplanetary disks are usually calculated from measurements of the dust continuum emission by assuming an interstellar gas-to-dust ratio. To investigate the utility of CO as an alternate probe of disk mass, we use ALMA to survey $^{13}$CO and C$^{18}$O J = $3-2$ line emission from a sample of 93 protoplanetary disks around stars and brown dwarfs with masses from 0.03 -- 2 M$_{odot}$ in the nearby Chamaeleon I star-forming region. We detect $^{13}$CO emission from 17 sources and C$^{18}$O from only one source. Gas masses for disks are then estimated by comparing the CO line luminosities to results from published disk models that include CO freeze-out and isotope-selective photodissociation. Under the assumption of a typical ISM CO-to-H$_2$ ratios of $10^{-4}$, the resulting gas masses are implausibly low, with an average gas mass of $sim$ 0.05 M$_{Jup}$ as inferred from the average flux of stacked $^{13}$CO lines. The low gas masses and gas-to-dust ratios for Cha I disks are both consistent with similar results from disks in the Lupus star-forming region. The faint CO line emission may instead be explained if disks have much higher gas masses, but freeze-out of CO or complex C-bearing molecules is underestimated in disk models. The conversion of CO flux to CO gas mass also suffers from uncertainties in disk structures, which could affect gas temperatures. CO emission lines will only be a good tracer of the disk mass when models for C and CO depletion are confirmed to be accurate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا