Do you want to publish a course? Click here

Exponential growth rates of free and amalgamated products

188   0   0.0 ( 0 )
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

We prove that there is a gap between $sqrt{2}$ and $(1+sqrt{5})/2$ for the exponential growth rate of free products $G=A*B$ not isomorphic to the infinite dihedral group. For amalgamated products $G=A*_C B$ with $([A:C]-1)([B:C]-1)geq2$, we show that lower exponential growth rate than $sqrt{2}$ can be achieved by proving that the exponential growth rate of the amalgamated product $mathrm{PGL}(2,mathbb{Z})cong (C_2times C_2) *_{C_2} D_6$ is equal to the unique positive root of the polynomial $z^3-z-1$. This answers two questions by Avinoam Mann [The growth of free products, Journal of Algebra 326, no. 1 (2011) 208--217].



rate research

Read More

We prove that for any prime $pgeq 3$ the minimal exponential growth rate of the Baumslag-Solitar group $BS(1,p)$ and the lamplighter group $mathcal{L}_p=(mathbb{Z}/pmathbb{Z})wr mathbb{Z}$ are equal. We also show that for $p=2$ this claim is not true and the growth rate of $BS(1,2)$ is equal to the positive root of $x^3-x^2-2$, whilst the one of the lamplighter group $mathcal{L}_2$ is equal to the golden ratio $(1+sqrt5)/2$. The latter value also serves to show that the lower bound of A.Mann from [Mann, Journal of Algebra 326, no. 1 (2011) 208--217] for the growth rates of non-semidirect HNN extensions is optimal.
We give several sufficient conditions for uniform exponential growth in the setting of virtually torsion-free hierarchically hyperbolic groups. For example, any hierarchically hyperbolic group that is also acylindrically hyperbolic has uniform exponential growth. In addition, we provide a quasi-isometric characterizations of hierarchically hyperbolic groups without uniform exponential growth. To achieve this, we gain new insights on the structure of certain classes of hierarchically hyperbolic groups. Our methods give a new unified proof of uniform exponential growth for several examples of groups with notions of non-positive curvature. In particular, we obtain the first proof of uniform exponential growth for certain groups that act geometrically on CAT(0) cubical groups of dimension 3 or more. Under additional hypotheses, we show that a quantitative Tits alternative holds for hierarchically hyperbolic groups.
We define a large class of abstract Coxeter groups, that we call $infty$--spanned, and for which the word growth rate and the geodesic growth rate appear to be Perron numbers. This class contains a fair amount of Coxeter groups acting on hyperbolic spaces, thus corroborating a conjecture by Kellerhals and Perren. We also show that for this class the geodesic growth rate strictly dominates the word growth rate.
69 - Tara Brough 2020
An improvement on earlier results on free products of automaton semigroups; showing that a free product of two automaton semigroups is again an automaton semigroup providing there exists a homomorphism from one of the base semigroups to the other. The result is extended by induction to give a condition for a free product of finitely many automaton semigroups to be an automaton semigroup.
In this paper we give a recursive formula for the conjugacy growth series of a graph product in terms of the conjugacy growth and standard growth series of subgraph products. We also show that the conjugacy and standard growth rates in a graph product are equal provided that this property holds for each vertex group. All results are obtained for the standard generating set consisting of the union of generating sets of the vertex groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا